Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Combining the outputs of multiple neural networks has been used in Ensemble architectures to improve the decision accuracy in many applications fields, including pattern recognition, in particular for the case of fingerprints. In this paper, we describe a set of experiments performed in order to find the optimal individual networks in terms of the architecture and training rule. In the second step, we used the fuzzy Sugeno Integral to integrate results of the ensemble neural networks. This method combines objective evidence in the form of the network's outputs, with subjective measures of their performance. In the third step, we used a Fuzzy Inference System for the decision process of finding the output of the ensemble neural networks, and finally a comparison of experimental results between Fuzzy Sugeno Integral and the Fuzzy Inference System are presented.
Rocznik
Tom
Strony
52--58
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
autor
- PhD Student of Computer Science in the Universidad Autonoma de Baja California, Tijuana, B. C., Mexico, and Computer Science in the Graduate Division Tijuana, Institute of Technology Tijuana, B. C. Mexico, danym23@aol.com
Bibliografia
- [1] 0. Mendoza, P. Melin, The Fuzzy Sugeno Integral as a Decision Operator in the Recognition oflmages with Modular Neural Networks, Tijuana Institute of Technology, Mexico.
- [2] J. Urias, D. Solano, M. Soto, M. Lopez, P. Melin, Type-2 Fuzzy Logic as a Method of Response Integration in Moduiar Neural Networks, IC-AI2006, pp. 584-590.
- [3] P. Melfn, F. Gonzalez, G. Martfnez: Pattern Recognition Using Modular Neural Networks and Genetic Algorithms. IC-AI 2004:77-83.
- [4] P. Melfn, J. Urias, D. Solano, M. Soto, M. Lopez, 0. Castillo, "Voice Recognition with Neural Networks, Type-2 Fuzzy Logic and Genetic Algorithms", Engineering Letters, vol. 13, no. 2,2006, pp. 108-116
- [5] P. Melfn, A. Mancilla, M. Lopez, D. Solano, M. Soto, O. Castillo, Pattern Recognition for Industrial Security using the Fuzzy Sugeno Integrat and Modular Neural Networks, Springer, 2007.
- [6] P. Melin and 0. Castillo, Hybrid Intelligent Systems for Pattern Recognition, Springer, 2005.
- [7] Mohamed Mostafa Abd Allah, "Artificial Neural Networks Fingerprints Authentication with Clusters Algorithm", Informatica, vol. 29,2005, pp. 303-307.
- [8] Hassiba Nemmour, Youcef Chibani, "Neural Network Combination by Fuzzy Integral for Robust Change Detection in Remotely Sensed Imagery", EURASIP Journal on Applied Signal Processing, vol. 14, 200, pp. 2187-2195
- [9] A. Sharkey, "On combining artificial neural nets", Connection Science, vol. 8,1996, pp. 299-313.
- [10] D. Maio, D. Maltom, R. Cappelli, J. L. Wayman and A. K. Jain, "FVC2004: Third Fingerprint Verification Competition", Proc. International Conference on Biometric Authentication (ICBA), Hong Kong, July 2004, pp. 1-7.
- [11] D. Maltom', D. Maio, A.K. Jain, S. Prabhakar, "The full FVC2000 and FVC2002 databases are available in the DVD", In: iidem, Handbook of Fingerprint Recognition, Springer: New York, 2003.
- [12] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Springer-Verlag, 2000, pp. 415-34.
- [13] M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, 2000, Springer-Verlag, pp. 348-73.
- [14] J. Keller, P. Gader, and A. Hocaoglu, "Fuzzy integrals in image processing and recognition". In: M. Grabisch, T. Murofushi, M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Springer-Verlag, 2000, pp.435-66.
- [15] T. Murofushi, M. Sugeno, "Ań interpretation of fuzzy measure and the Choquet integral as an integral with respect to a fuzzy measure", Fuzzy Sets and Systems, vol. 29, issue 2,1989, pp. 202-27.
- [16] T. Murofushi, M. Sugeno, "The Choquet integral in multiattribute dedsion making". In: M. Grabisch et al. (Eds.), Fuzzy Measures and Integrals: Theory and Applications, Springer-Verlag, 2000, pp. 333-47.
- [17] T. Murofushi, S. Soneda, "Techniques for reading fuzzy measures (III): interaction index". In: Proceedings of the 9th Fuzzy System Symposium, Saporo, Japan, 1993, pp.693-696.
- [18] M. Grabisch, "A new algorithm for identifying fuzzy measures and its application to pattern recognition". In: Proceeding of the 4th IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 1995, pp.145-50.
- [19] MATLAB Trade Marks, ©1994-2007 by The MathWorks, Inc.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0018-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.