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Abstract:

The Particle Swarm Optimization (PSO) and the Genetic
Algorithms (GA) have been used successfully in solving
problems of optimization with continuous and combina-
torial search spaces. In this paper the results of the appli-
cation of PSO and GAs for the optimization of mathema-
tical functions are presented. These two methodologies
have been implemented with the goal of making a compa-
rison of their performance in solving complex optimization
problems. This paper describes a comparison between a GA
and PSO for the optimization of complex mathematical
functions.
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1. Introduction

We describe in this paper the application of a Genetic
Algorithm (GA) [1] and Particle Swarm Optimization
(PSO) [2] for the optimization of mathematical func-
tions. In this case, we are using the Rastrigin's function,
Rosenbrock's function, Ackley's function, Shubert's func-
tion, Sphere's function and Griewank's function [4] to
compare the optimization results between a Genetic
Algorithm and Particle Swarm Optimization.

2. Genetic Algorithm for Optimization

John Holland, from the University of Michigan began
his work on genetic algorithms at the beginning of the
1960s. His first achievement was the publication of
Adaptation in Natural and Artificial System [7]in 1975.

Holland had two goals in mind: to improve the under-
standing of natural adaptation process, and to design
artificial systems having similar properties to natural
systems [8].

The basic idea is as follows: the genetic pool of
a given population potentially contains the solution, or
a better solution, to a given adaptive problem. This
solution is not "active" because the genetic combination
on which it relies is split between several subjects. Only
the association of different genomes can lead to the
solution.

Holland's method is especially effective because it
not only considers the role of mutation, but it also uses
genetic recombination, (crossover) [9]. The crossover of
partial solutions greatly improves the capability of the
algorithm to approach, and eventually find, the optimal
solution.

The essence of the GA in both theoretical and prac-
tical domains has been well demonstrated [1]. The con-
cept of applying a GA to solve engineering problems

is feasible and sound. However, despite the distinct ad-
vantages of a GA for solving complicated, constrained
and multiobjective functions where other techniques
may have failed, the full power of the GA in application is
yet to be exploited [12].

To bring out the best use of the GA, we should explore
further the study of genetic characteristics so that we can
fully understand that the GA is not merely a unique
technique for solving engineering problems, but that it
also fulfils its potential for tackling scientific deadlocks
that, in the past, were considered impossible to solve.
In figure 1 we show the reproduction cycle of the Genetic
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Fig. 1. The Reproduction cycle of a GA.
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The Simple Genetic Algorithm can be expressed in
pseudo code with the following cycle:
1. Generate the initial population of individuals
aleatorily P(0).
2. While (number _ generations <= maximum _ numbers
_generations)
Do:

{

N

Selection

Evaluation;
Selection;
Reproduction;
Generation ++;
}
3. Show results
4. End of the generation

2.1. Geneticoperators

Once we have the genetic representation and the
fitness function defined, the GA proceeds to initialize
a population of solutions randomly, then improve it
through repetitive application of mutation, crossover,
and selection operators.

2.1.1. Initialization

Initially many individual solutions are randomly
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generated to form an initial population. The population
size depends on the nature of the problem, but typically
contains several hundreds or thousands of possible solu-
tions. Traditionally, the population is generated ran'
domly, covering the entire range of possible solutions
(the search space). Occasionally, the solutions may be
"seeded" in areas where optimal solutions are likely to be
found [26].

2.1.2. Selection

During each successive epoch, a proportion of the
existing population is selected to breed a new genera-
tion. Individual solutions are selected through a fitness-
based process, where fitter solutions (as measured by
a fitness function) are typically more likely to be
selected. Certain selection methods rate the fitness of
each solution and preferentially select the best solutions.
Other methods rate only a random sample of the popu-
lation, as this process may be very time consuming [26].

Most functions are stochastic and designed so that
a small proportion of less fit solutions are selected. This
helps keep the diversity of the population large, prevent-
ing premature convergence on poor solutions. Popular
and well-studied selection methods include roulette
wheel selection and tournament selection.

2.1.3. Reproduction

The next step is to generate a second generation
population of solutions from those selected through
genetic operators: crossover (also called recombination),
and/or mutation.

For each new solution to be produced, a pair of
"parent" solutions is selected for breeding from the pool
selected previously. By producing a "child" solution
using the above methods of crossover and mutation,
a new solution is created which typically shares many of
the characteristics of its "parents". New parents are
selected for each child, and the process continues until
a new population of solutions of appropriate size is
generated.

These processes ultimately result in the next genera-
tion population of chromosomes that is different from
the initial generation. Generally the average fitness will
have increased by this procedure for the population,
since only the best organisms from the first generation
are selected for breeding, along with a small proportion
of less fit solutions, for reasons already mentioned
above.

2.1.4. Termination

This generational process is repeated until a termina-
tion condition has been reached. Common terminating
conditions are:

A solution is found that satisfies minimum criteria.

Fixed number of generations reached.

Allocated budget (computation time/money) reached.

3. Biological Background

All living organisms consist of cells. In each cell there
is the same set of chromosomes. Chromosomes are strings
of DNA and serves as a model for the whole organism.
A chromosome's characteristic is determined by the
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genes. Each gene has several forms or alternatives which
are called alleles, producing differences in the set of
characteristics associated with that gene. The set of chro-
mosome is called the genotype, which defines a pheno-
type (the individual) with a certain fitness [26].

During reproduction, first occurs recombination (or
crossover). Genes from parents form in some way the
whole new chromosome. The new created offspring can
then be mutated.

Mutation means, that the elements of DNA are a bit
changed. This changes are mainly caused by errors in
copying genes from parents. The fitness of an organism is
measured by success of the organism in its life. According
to Darwinian theory the highly fit individuals are given
opportunities to “reproduce” whereas the least fit mem-
bers of the population are less likely to get selected for
reproduction, and so “die out”.

4. Particle Swarm Optimization

Team formation has been observed in many animal
species [3]. For some animal species, teams, or groups,
are controlled by a leader, for example a pride of lions,
a troop of baboon, or a troop of wild buck, to name a few.
One of the first studies of such animal societies is the
work of Eugéne N. Marais in his studies of the wild
chacma baboon in the early 1900s [5]. In these societies
the behavior of individuals is strongly dictated by social
hierarchy. More interesting is the self-organizing beha-
vior of species living in groups where no leader can be
identified, for example, a flock of birds, a school of fish,
or a herd of sheep. Within these social groups individuals
have no knowledge of the global behavior of the entire
group, nor do they have any global information about the
environment. Despite this, they have the ability to gat-
her and move together, based on local interactions bet-
ween individuals. From the simple, local interaction bet-
ween individuals, more complex collective behavior
emerges, such as flocking behavior, homing behavior,
exploration and herding [6, 10, 11].

A large number of studies of the collective behavior of
social animals have been done, for example,
bird flocking behavior [11];
fish schooling behavior [13, 14, 15];
the hunting behavior of humpback whales [16];
the foraging behavior of wild monkeys [17, 18]; and
the courtship-like and foraging behavior of the
basking shark [19, 20].

Particle swarm optimization (PSO), introduced by
Kennedy and Eberhart [21], is based on a social-psycho-
logical model of social influence and social learning [22].
Individuals in a particle swarm (PS) follow a very simple
behavior: emulate the success of neighboring indivi-
duals. The collective behavior that emerges is that of
discovering optimal regions of high dimensional search
space. This behavior is in accordance with the hypo-
theses of Wilson [23]. PSO has its origins in the work of
the Reynolds [11]. A simplified social model has been
developed, where the simple behaviors of determining
nearest neighbors and velocity matching have been
implemented. The initial intent of the simulation model
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was to simulate the graceful, but unpredictable choreo-
graphy of birds in a flock. The simulation model randomly
initializes positions of birds on a torus pixel grid [24].
At each iteration, each individual determines its nearest
neighbor and replaces its velocity with that of its neigh-
bor. This simple behavior resulted in synchronous move-
ment of the flock. However, the flock settled too quickly
on an unanimous, unchanging flying direction. To solve
this, a craziness component was introduced in the form
of random adjustments to velocities.

To further expand the model, the rooster concept of
Heppner and Grenander was added, in the form of a me-
mory of previous best and neighborhood best positions,
referred to as the cornfield. The personal best position of
each individual is the best position found by that indi-
vidual since the start of the simulation. The neighbor-
hood best position is the best position found by the
neighborhood of flocks mates. These two best positions
proportionally to the distance from best positions, the
flock clustered around the goal within a few iterations.
This resulted even without velocity matching and
craziness.

4.1. BasicParticle Swarm Optimization

Since its introduction in 1995 [24, 25] particle swarm
optimization (PSO) has seen many improvements and
applications. Most modifications to the basic PSO are
directed towards improving convergence of the PSO and
increasing the diversity of the swarm.

A PSO algorithm maintains a swarm of particles,
where each particle represents a potential solution.
In analogy with evolutionary computation paradigms,
a swarm is a similar to a population, while a particle is
similar to an individual. In simple terms, the particles are
“flown” through a multidimensional search space, where
the position of each particle is adjusted according to its
own experience and that of its neighbors. Letx,(¢) denote
the position of particle i in the search space at time step
t; unless otherwise stated, t denotes discrete time steps.
The position of the particle is changed by adding a velo-
city, vi(¢), to the current position, i.e. see equation 1.

x(t+1) =x,(t) +v(t+1) (1)
withx,(0) ~ U(Xmin, Xmax)

It is a velocity vector that drives the optimization
process, and reflects both the experiential knowledge of
the particle and socially exchanged information from the
particle's neighborhood. The experiential knowledge of
a particle is generally referred to as the cognitive com-
ponent, which is proportional to the distance of the
particle from its own best position (referred to as the
particle's personal best position) found since the first
time step. The socially exchanged information is referred
to as the social component of the velocity equation.
See equation 1.

Originally, two PSO algorithms have been developed
which differ in the size of their neighborhoods. These two
algorithms, namely the “gbest” and “lbest”, are conside-
red in this paper.

4.2. Global Best PSO

For the global best PSO, or ghest PSO, the neighbor-
hood for each particle is the entire swarm. The social
network employed by the gbest PSO reflects the star to-
pology. For the star topology, the social component of
the particle velocity update reflects information obtain-
ed from all the particles in the swarm. In this case, the
social information is the best position found by the
swarm, referred to as ().

For gbest PSO, the velocity of particle i is calculated
as (see equation 2)

(2)
V(1) = v, (1) + e (O (1) x,(O)] + ey (D) x,(0)]

where v,(¢) is the velocity of particle i in dimension
j=1,...,nxattime stept, x,(¢) is the position of particle
i in dimension j at time step ¢, ¢, and c, are positive
acceleration constants used to scale the contribution of
the cognitive and social components respectively, and
r(t), ry(t) ~ U(0,1) are random values in the range
[0,1], sampled from a uniform distribution. This random
values introduce a stochastic element to the algorithm.

The personal best position, y,, associated with parti-
cle iis the best position the particle has visited since the
first time step.

The gbest PSO is summarized in Algorithm 1. In this
algorithm, the notation S.xi is used to denote the
position of particleiin swarm S.

Algorithm 2 lbest PSO

Create and initialize an nx-dimensional swarm, S;
Repeat
For each particlei = 1,...,S.ns do
//set the personal best position
IfFf(S.x;) <f(S.y,) then
Sy, =8x;
End
//set the global best position if
iff(S.y,) < f(S,) then
Sy=Sy;
End
End
For each particlei = 1,...,S.ns do
Update the velocity using equation (1);
Update the position using equation (2);
End
Until stopping condition is true;

4.3. Local Best PSO

The local best PSO, or lbest PSO, using a ring social
network topology where smaller neighborhoods are defi-
ned for each particle. The social component reflects
information exchanged within the neighborhood of the
particle, reflecting local knowledge of the environment.
With reference to the velocity equation, the social contri-
bution to particle velocity is proportional to the distance
between a particle and the best position found by the
neighborhood of particles. The velocity is calculated
as (see equation 3)
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(3)
vi(t+1) =vy(0) +er (O, (0) x,(O)] +ery (O, () x,(0)]

where p, is the best position, found by the neighbor
hood of particleiin dimensionj.

Algorithm 2 lbest PSO

Create and initialize an nx-dimensional swarm, S;

Repeat

For each particlei = 1,...,8.ns do
//set the personal best position
Iff(S.x;) <f(S.y,) then
Sy, =8x;
End
//set the neighborhood best position if
iff(S.y,) <f(S,) then Fig. 2. Plot of Rastrigin's function.
Sy=Syi
End
End 5.2. Rosenbrock's Function
For each particlei = 1,...,8.ns do = Number of variables: 2 variables.
Update the velocity using equation (3); ®  Definition: See (equation 5)
Update the position using equation (1); n-1
End f(x)= [100(x —x7 +1)% +(x, =1)7] (5)
Until stopping condition is true. i=1
Number of local minima: several local minima.
The global minima:x* = (1, ..., 1), f(x*) = 0.
5. Mathematical Functions = Function graph: forn = 2. See (Fig. 3)

In the field of evolutionary computation, it is com-
mon to compare different algorithms using a large test
set, especially when the test involves function optimi-
zation. However, the effectiveness of an algorithm
against another algorithm cannot be measured by the
number of problems that it solves better. If we compare
two searching algorithms with all possible functions, the e,
performance of any two algorithms will be, on average,
the same. Asaresult, attempting to design a perfect test
set where all the functions are present in order to 000
determine whether an algorithm is better than another 0
for every function. The reason why, when an algorithm is -
evaluated, we must look for the kind of problems where
its performance is good, in order to characterize the type
of problems for which the algorithm is suitable. In this
way, we have made a previous study of the functions to
be optimized for constructing a test set with six bench-
mark functions and a better selection. This allows us to Fig. 3. Plot of Rosenbrock's function.
obtain conclusions of the performance of the algorithm
depending on the type of function. The mathematical

10000+ ¢

functions analyzed in this paper are the Rastrigin's func- 5.3. Ackley's Function
tion Rosenbrock's function, Ackley's function, Shubert's = Number of variables: 2 variables.
function, Sphere's function and Griewank's function. All ®  Definition: See (equation 6)
the functions were evaluated considering 2 variables.
f(x)=20+e-20e"° [1/nY " x - (6)
5.1. Rastrigin's Function N
®  Number of variables: 2 variables. —¢ Zizl cos(2mx, )
Definition: See (equation 4) = Number of local minima: several local minima.
n The global minima:x* = (1, ..., 1), f(x*) = 0.
f(x)=10n+ Z (x* —=10cos(2nx;, )) (4) ®  Function graph: forn = 2. See (Fig. 4)
i=1

Number of local minima: several local minima.
The global minima: x* = (0, ...,0), f(x*) = 0.
Function graph: forn = 2. See (Fig. 2)
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Fig.4. Plot of Ackley's function.

5.

4. Shubert's Function
Number of variables: n = 2.
Definition: See (equation 7)

(7)
f(x)= (iicos((i +1)x, + ij(iicos((i +Dx, + i)

Number of local minima: several local minima.
The global minima: 18 global minima,

fx*®) =-186.7300.

Function graph: forn = 2. See (Fig. 5)

Fig.6. Plot of Sphere's function.

5.6. Griewank's Function
= Number of variables: 2 variables.
Definition: See (equation 9)

(9)

f(x) = Z x; —ﬁcos(x[ i) +1

1 4000

Search domain: -600 < x,< 600,i=1,2,...,n.
Number of local minima: several local minima.
The global minima:x* = (0, ...,0),f(x*) =0
Function graph: forn = 2. See (Fig. 7)

Fig.5. Plot of Shubert's function.

5

.5. Sphere's Function
Number of variables: 2 variables.
Definition: See (equation 8)

f)=2 % (8)

Searchdomain:-5.12 < x,< 5.12i=1,2,...,n.
Number of local minima: no local minimum except
the global one.

The global minima: x* = (0, ...,0),f(x*) =0
Function graph: forn = 2. See (Fig. 6)

Fig. 7. Plot of Griewank's function.

6. Simulation Results

Several tests of the PSO and GA algorithms were made
in the Matlab programming language. All the implemen-
tations were developed using a computer with processor
AMD turion X2 of 64 bits that works to a frequency of
clock of 1800 MHz, 2 GB of RAM Memory and Windows
Vista Ultimate operating system.

6.1. Experimental Results with the Genetic

Algorithm (GA)
The results obtained after applying the genetic algo-
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rithm to the mathematical functions are shown on tables
1,2,3,4,5and6:

Parameters of Tables 1, 2, 3, 4, 5 and 6:

No. =Number of experiment

TEST = Number of times that the Genetic Algorithm was
executed with the same parameters

GEN = Generations number

POP = Population size

CROSS =Crossover type and % crossover

MUT = Mutation type and % mutation

BEST = Best Fitness Value

MEAN = Mean of 50 tests

6.1.1. Results obtained after applying the genetic
algorithm to the Rastrigin's function

From Table 1 it can be appreciated that after execut-
ing the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 7.36E-07,
which is the shaded value in Table 1 (Experiment 1).
The best average objective value was 2.15 E-03 obtained
in Experiment 1.

Table 1. Results obtained after applying the genetic algo-
rithm to the Rastrigin's function.

GEN | POP | CROSS | %CROSS | MUT |%MUT| SEL BEST MEAN

100 | 100 scat 80 gauss| 2 Rou | 7.36E-07 | 2.15E-03
100 | 70 scat 50 gauss| 10 | Rou | 8.71E-04 | 3.41E-02
150 | 150 scat 90 gauss| 9 Rou | 4.44E-05 | 7.00E-03
80 40 |two point 90 gauss| 5 Rou | 2.05E-04 | 8.53E-02
80 40 scat 25 gauss| 10 | Rou | 2.49E-04 | 3.10E-01

6.1.2. Results obtained after applying the genetic

algorithm to the Rosenbrock's function.

From Table 2 it can be appreciated that after execut-
ing the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 2.35E-07,
which is the shaded value in Table 2 (Experiment 1). The
best average objective value was 1.02 E-05 obtained in
Experiment 1.

Table 2. Results obtained after applying the genetic algo-
rithm to the Rosenbrock's function.

GEN | POP | CROSS | %CROSS | MUT |%MUT| SEL BEST MEAN

200 | 150 scat 50 gauss| 1 Rou | 2.35E-07 | 1.02E-05
80 40 scat 25 gauss| 10 | Rou | 6.03E-04 | 2.96E-02
150 | 90 scat 90 gauss| 6 Rou | 6.35E-04 | 1.61E-02
150 | 100 scat 65 gauss| 8 Rou | 3.38E-06 | 2.98E-02

6.1.3. Results obtained after applying the genetic

algorithm to the Ackley function.

From Table 3 it can be appreciated that after execut-
ing the GA 50 times, in 5 cases the value closest to the
global minimum was 2.98 and the genetic algorithm were
not able to find the global minimum for the Ackley
function.
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Table 3. Results obtained after applying the genetic algo-
rithm to the Ackley's function.

GEN | POP | CROSS |%CROSS| MUT |%MUT| SEL BEST MEAN

100 | 100 | scat 80 |gauss| 2 Rou {2.981082489|2.980868171
150 | 100 | scat 65 |gauss| 8 Rou 2.981169 2.994222
100 | 120 | scat 70 |gauss| 8 Rou 2.980857 2.986018
100 | 90 scat 80 |gauss| 5 Rou 2.985482 2.986464
100 | 90 scat 30 |gauss| 9 Rou | 2.989068 3.028187

6.1.4. Results obtained after applying the genetic

algorithm to the Shubert's function.

From Table 4 it can be appreciated that after execut-
ing the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at -186.7303,
which is the shaded value in Table 4 (Experiment 2). The
best average objective value was 186.668 obtained in
Experiment 3.

Table 4. Results obtained after applying the genetic algo-
rithm to the Shubert function.

GEN | POP | CROSS |%CROSS| MUT |%MUT| SEL BEST MEAN

100 | 90 scat 30 |gauss| 9 Rou | -186.725467 |-186.026239
Rou |-186.7303482|-186.560965
Rou | -186.27423 |-186.668163
Rou | -186.726104 | -184.202502
Rou | -186.663188 |-178.940276

120 | 120 | scat 75 |gauss

120 | 200 | scat 75 |gauss

120 | 100 | scat 95 |gauss

0 o |©v |©v

80 60 scat 95 |gauss

6.1.5. Results obtained after applying the genetic

algorithm to the Sphere's function.

From Table 5 it can be appreciated that after execut-
ing the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 3.49E-07,
which is the shaded value in Table 5 (Experiment 4). The
best average objective value was 1.62E-04 obtained in
Experiment 1.

Table 5. Results obtained after applying the genetic algo-
rithm to the Sphere's function.

GEN | POP | CROSS |%CROSS| MUT |%MUT| SEL BEST MEAN
100 | 20 Scat 80 |gauss| 1 Rou 1.02E-05 | 1.62E-04
50 40 Scat 50 |gauss| 9 Rou | 0.05831066 | 6.97E-03

80 50 |[two point| 72 |gauss| 20 | Rou | 8.80E-07 | 1.26E-03
80 70 |two point| 84 |gauss| 9 Rou | 3.49E-07 | 6.44E-04
100 | 30 Scat 74 |gauss| 10 | Rou 6.44E-04 | 4.03E-03

6.1.6. Results obtained after applying the genetic

algorithm to the Griewank function.

From Table 6 it can be appreciated that after execut-
ing the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 1.84E-07,
which is the shaded value in Table 6 (Experiment 5). The
best average objective value was 2.552E-05 obtained in
Experiment 5.
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Table 6. Results obtained after applying the genetic algo-
rithm to the Griewank's function.

GEN | POP | CROSS |%CROSS| MUT |%MUT| SEL BEST MEAN

80 30 Scat 74 |gauss| 10 | Rou | 5.35E-04 |0.06094737

100 | 80 Scat 90 |gauss| 6 Rou |0.09573318|0.47031062

100 | 100 |two point| 30 |gauss| 7 Rou | 3.89E-05 |0.00307528

80 70 |two point| 84 |gauss| 7 Rou | 4.78E-04 |0.15430235

80 80 Scat 90 |gauss| 10 | Rou | 1.84E-07 | 2.552E-05

6.2. Experimental Results with the Particle Swarm
Optimization (PSO)

The results obtained after applying the particle swarm

optimization to the mathematical functions are shown on
tables 7,8,9,10,11and 12:

Parameters of Tables 7, 8,9, 10, 11and 12:
BEST = Best fitness value

DIM = Dimensions

POP = Population size

MEAN = Mean of 50 tests

6.2.1. Results obtained after applying the particle
swarm optimization to the Rastrigin's function

From Table 7 it can be appreciated that after execu-
ting the PSO 50 times, only in 3 cases the global minimum
was achieved with the best objective value at 3.48E-05,
which is the shaded value in Table 7 (Experiment 2). The
best average objective value was 2.87 obtained in
Experiment 1.

Table 7. Results obtained after applying the PSO to the Ras-
trigin's function.

POP | DIM BEST MEAN

80 10 2.27E-03 2.87E+00
20 10 3.48E-05 5.47E+00
80 10 9.95E-01 1.29E+01
20 20 9.00E+00 1.29E+01
40 20 8.96E+00 5.07E+01

6.2.2. Results obtained after applying the particle
swarm optimization to the Rosenbrock's function
From Table 8 it can be appreciated that after execu-
ting the PSO 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 2.46E-03,
which is the shaded value in Table 8 (Experiment 3). The
best average objective value was 1.97E+01 obtained in
Experiment 3.

Table 8. Results obtained after applying the PSO to the
Rosenbrock’s function.

POP | DIM BEST MEAN

20 10 5.19E-02 7.41E+01
80 10 6.12E-02 2.40E+01
40 10 2.46E-03 1.97E+01
80 10 6.02E-03 2.59E+01
80 30 2.97E+00 1.26E+02

6.2.3. Results obtained after applying the particle
swarm optimization to the Ackley's function
From Table 9 it can be appreciated that after execu-
ting the PSO 50 times, in 5 cases the value closest to the
global minimum was 2.98 and the particle swarm optimi-
zation were not able to find the global minimum for the
Ackley function.

Table 9. Results obtained after applying the PSO to the
Ackley's function.

POP | DIM BEST MEAN
10 2 2.980500 2.980500
6 1 2.980499 4.56
50 1 2.980500 2.980500
30 1 2.980500 2.980500
40 2 2.980500 2.980500

6.2.4. Results obtained after applying the particle
swarm optimization to the Shubert's function.
From Table 10 it can be appreciated that after execu-
ting the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at -186.7309.
The best average objective value was -186.7309.

Table 10. Results obtained after applying the PSO to the
Shubert's function.

POP | DIM BEST MEAN

20 10 -186.7308 -186.7308
40 10 -186.7309 -186.7309
80 10 -186.7309 -186.7309
80 20 -186.7309 -186.7309
80 30 -186.7309 -186.7309

6.2.5. Results obtained after applying the particle
swarm optimization to the Sphere's function
From Table 11 it can be appreciated that after execu-
ting the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 3.89E-11,
which is the shaded value in Table 9 (Experiment 4). The
best average objective value was 8.26E-11.

Table 11. Results obtained after applying the PSO to the
Sphere's function.

POP | DIM BEST MEAN

20 10 4.88E-11 8.26E-11
40 10 4.12E-11 8.51E-11
80 10 4.46E-11 8.29E-11
20 20 3.89E-11 6.86E-10
40 20 6.31E-11 9.11E-11

6.2.6. Results obtained after applying the particle
swarm optimization to the Griewank's function
From Table 12 it can be appreciated that after execu-
ting the GA 50 times, only in 5 cases the global minimum
was achieved with the best objective value at 9.77E-11,
which is the shaded value in Table 12 (Experiment 5). The
best average objective value was 2.56E-02.
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Table 12. Results obtained after applying the PSO to the
Griewank's function.

POP | DIM BEST MEAN

40 10 3.20E-02 1.06E-01
20 10 9.86E-03 8.82E-02
80 10 1.23E-02 7.58E-02
20 20 3.69E-08 2.77E-02
40 20 9.77E-11 2.56E-02

7. Conclusions

The analysis of the simulation results of the two evo-
lutionary methods considered in this paper, in this case
the Genetic Algorithm (GA) and the Particle Swarm Opti-
mization (PS0O), lead us to the conclusion that for the
problems of optimization of these 6 mathematical func-
tions, in all cases one can say that the two proposed
methods work correctly and they can be applied for this
type of problems.

After studying the two methods of evolutionary com-
puting (GA and PSO), we reach the conclusion that for the
optimization of these 6 mathematical functions, GA and
PSO evolved in a similar form, achieving both methods
the optimization of 5 of the 6 proposed functions, with
values very similar and near the objectives. Also it is
possible to observe that even if the GA as the PSO did not
achieve the optimization of the Ackley's function, this
may have happened because they were trapped in local
minima.

Figure 8 shows the comparison of the results obtained
for these 6 test functions and it can be appreciated that
the values that were taken from the tables of results above
mentioned, the GA and the PSO obtained very good results
and was very little the difference between of them. Table
13 shows the values corresponding to figure 8.

The advantage to use PSO is that there are few para-
meters used for the implementation. The genetic algo-

rithm uses more parameters for its implementation.

Comparison between GA and PSO

2.00E+01

0.00E+00 /T === = = ===

-2.00E+01 1 O Best mean value with GA
3 -4.00E+01 + O Best mean value with PSO
'S -6.00E+01 4
B -8.00E+01 1
“E' -1.00E+02 1
4 -1.20E+02 1= Rastrigin
& -1.40E+02 2= Rosenbrock

-1.60E+02 3= Ackley

-1.80E+02 4= Shubert

-2.00E+02 ‘ ‘ ‘ : : 5= Sphere

1 2 3 4 5 6 6= Griewank

Mathematical Functions

Fig. 8. Comparison between GA and PSO.

From Table 13 it can be appreciated that after execu'
ting the GA and PSO, the comparison of the results ob-
tained between GA and PSO for the optimization of the 6
proposed mathematical functions of this paper. The table
shows the results for the figure 8, it can be appreciated in
some cases, the GA was better than the PSO, for example,

Articles

for the Rastrigin's function, Rosenbrock's function and
Griewank's function. In other cases, the PSO was better
than the GA, for example, the Sphere's function.

Table 13. Comparison between GA and PSO.

Mathematical GA PSO Objective Number
Functions Value of variables
Rastrigin 7.36E-07 3.48E-05 0 2

Rosenbrock 2.35E-07 2.46E-03 0 2
Ackley 2.98108249 2.9805 0 2
Shubert -186.730348 -186.7309 -186.73 2
Sphere 1.62E-04 8.26E-11 0 2
Griewank 2.552E-05 2.56E-02 0 2
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