Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

AN ACO PATH PLANNER USING A FIS FOR PATH SELECTION
ADJUSTED WITH A SIMPLE TUNING ALGORITHM

Miguel Porta-Garcia, Oscar Montiel, Roberto Sepulveda

Abstract:

This paper presents a path planner application for
mobile robots based on Ant Colony Optimization (ACO).
The selection of the optimal path relies in the criterion of
a Fuzzy Inference System (FIS), which is adjusted using
a Simple Tuning Algorithm (STA). The path planner can be
executed in Mode I and Mode II. The first mode only works
in the virtual environment of the interface, while Mode II
embraces the wireless communication with a real robot;
once the ACO algorithm finds the best route, the coordi-
nates are sent to a mobile robot via Bluetooth communi-
cation; if the robot senses a new obstacle, the computer is
notified and does a rerouting routine in order to avoid the
obstacle and reach the goal. In other words, the appli-
cation supports dynamic search spaces.

Keywords: ant colony optimization, ACO, autonomous
mobile robot navigation, fuzzy logic, path planning.

1. Introduction

The autonomous mobile robot navigation can be
divided in two subsequent problems: path planning and
control of movement [1]. Specifically, the tasks involved
in navigation are the perception of the environment, the
path planning, generation of paths, and finally the route
following. This work is concretely focused on the path
planning and generation of optimal paths, starting from
previous information of the search space. The route
following using the real robot is reserved as a second
phase of the method, which is explained later.

Robotics is an essential part in automatization of
manufacturing processes. Concerning about mobile
robots, autonomous navigation entails a great challenge.
Mobile robots can be very useful in different situations
where humans could be in danger or when they are not
able to reach certain target because of terrain condi-
tions. Then, the path planning is an interesting and
challenge subject for research, and it has many different
approaches. This paper proposes a method based on an
Ant Colony Optimization Meta-Heuristic (ACO-MH) for
path planning finding the best route according to certain
cost function.

The ACO-MH is inspired in the foraging behavior of
real ants for finding the optimal path from the nest to
where the food is. As the communication method, some
ant species use stigmergy, a term introduced by French
biologist Pierre-Paul Grassé in 1959. With stigmergy,
each ant communicates with one another by modifying
their local environment. The ants achieve this task by

laying down pheromones along their trails [2]. ACO-MH
solves mainly combinatorial optimization problems
defined over discrete search spaces. The ant-based
algorithms, developed as a result of studies of ant
colonies, are referred as instances of ACO-MH [3]. Inthis
work, the proposed method is based on an ACO-MH
instance, called Simple Ant Colony Optimization (SACO).
Some innovative ideas to improve the basic ACO
algorithm used for the suggested method are presented
and applied to achieve the path planning.

There are several approaches for path planning, like
[4], where a method based on an exhaustive search
algorithm on graphs for indoor environments. In [5],
a visual tool to teach graph-based applications uses the
robot motion planning as example for academic pur-
poses, and the shortest path computation among static
obstacles is made using Dijkstra's algorithm. There are
some other hybrid approaches like [6], where a smooth
path planning method for unknown environments with
nonholonomic robots is proposed, and a fuzzy controller
is used to wall following. However, few approaches like
the one presented in this paper have the ability of
allowing rapid changes in the search space. Taking
advantage of the ACO algorithm characteristics, which
permits working with dynamic optimization problems,
the proposed framework has a rerouting capability for
avoiding obstacles if the robot sense an object over the
given path, performing the necessary procedures to
recalculate the avoidance route after the computer has
been notified.

Referring to emergent natural optimization methods,
such as ACO, there are some similar works like [7], where
the robot has to visit multiple targets, like the traveling
salesman problem but with the presence of obstacles. The
robot in this case is modeled as a point robot; that is, the
robot occupies an exact cell in the discrete representa-
tion of the workspace. Using several robots as ants, this
robot team architecture has to be in constant communi-
cation with each other at all times to share pheromone
information. There are some other approaches for similar
tasks, like [8], where a new meta-heuristic method of
ACO is proposed to solve the vehicle routing problem,
using a multiple ant colony technique where each colony
works separately. On the other hand, there are many
path-planning approaches by other soft computing tech-
niques, such like Genetic Algorithms [9-15]. Then, as it
can be observed in actual reports [16, 17], the focus on
ant algorithms is growing becoming an interesting
alternative of solution for path planning.

Articles



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

2. SACO algorithm

The SACO is an algorithmic implementation that
adapts the behavior of real ants to solution of minimum
cost path problems on graphs. A number of artificial ants
build solutions for a certain optimization problem and
exchange information about the quality of these
solutions making allusion to the communication system
of therealants [18].

Let be the graph G = (V,E), where V' is the set of
nodes and E is the matrix of links between nodes. G has
n, = |V| nodes. Let be L* the number of hops in the
path built by ant k from the origin node to the destiny
node. Therefore, it needs to be found:

0=1q,..q,g.€ C} (1)

Where Q is the set of nodes representing a path at least

continuous with no obstacles; g,,...g, are former nodes of

the path and C'is the set of possible configurations of the

free space. If xX(t) denotes a Q solution in time ¢,

f(x"(t)) expresses the quality of the solution. In general

terms, the steps of SACO are as follows:

e Fach link (ij) is associated with a pheromone
concentration denoted as 7;.

e A number k = I,...,n, are placed in the origin node
(the nest).

e (n each iteration or epoch all ants build a path to the
destiny node (the food source). For the next node
selection it is used the probabilistic formula:

0

Py 2005 O
0 if jeNf

if jeNf
(2)

In Eq. 2, is the set of feasible nodes connected to node i
with respect to ant k; 1, is the total pheromone
concentration of link ij, where o is a positive constant
used as gain for the pheromone concentration influence.

e Remove cycles and compute each route weight
f(x(t)). A cycle could be generated when there are no
feasible candidates nodes, that is, for any node i and
ant k, N= (; then predecessor of that node i is
included as a former node of the path.

e (Compute pheromone evaporation using the Eq. 3.

Tij (t) — (]_p) Tij (t) (3)

In Eq. 3, pis the evaporation rate value of the pheromone
trail. The evaporation is added to the algorithm in order
to force the exploration of the ants, and avoid premature
convergence to sub-optimal solutions. For p = 1, the
search is completely random. While an ant takes more
time for crossing a path, there is more time for the
pheromone trail to evaporate. On a short path, which is
crossed quickly, the density of the pheromone is higher.
Evaporation avoids convergence to local optimums.
Without evaporation, the paths generated by the first
ants would be excessively attractive for the subsequent
ones. In this way, exploration of the search space is not
too restricted.

Articles

e Update pheromone concentration by using Eq. 4.

ny

T+ D) =1,(0)+ Y At (1) (4)

e Thealgorithm can be ended in three different ways:
- When a maximum number of epochs has been
reached.
- When it has been found an acceptable solution,
with f(x(1)) <e.
- Whenallants follow the same path.

3. Improvements over SACO for mobile

robotic application

In general, a novel framework to achieve path
planning is proposed. Several aspects were included to
improve the SACO algorithm. In the algorithm it was
designed a fuzzy cost function based in the expert
heuristic knowledge; the original transition probabilistic
formula (2) was modified to accelerate the decision
process mainly in obstacle free search spaces. In addition,
it was added a memory capability to avoid the algorithm
stagnation. An important characteristic is the added
ability to work with dynamic search spaces departing from
a giving map or by discovering.

3.1 Thesearch area design

This approach makes some improvements over the
SACO algorithm and adaptations for the mobile robot
routing problem of this research work. The map where the
mobile robot navigates is a search space discretized into
a matrix representing a graph of 50x50 nodes, where “0”
means a feasible node (plain terrain) and “1” are
obstacles. It is remarkable to say that each artificial ant of
the algorithm is a scale representation of the real mobile
robot, which means the proposed method considers
robot's dimensions (for this case, the Boe-Bot); for
example, there are going to be situations during the
optimization process, where some paths are rejected if
the robot doesn't fit in the space between two obstacles.
Under this premise, several computations are saved since
some nodes are rejected before the algorithm spends time
using them to build paths. The 50x50 map represents
a4m’area, in a 1:4 scale (cm).

For this method, it is assumed all nodes are inter-
connected. In a map with no obstacles, there are 2500
feasible nodes; therefore the matrix of links £ would be
extremely large. For this reasons E is not used, and the
pheromone amount value is assigned at each node, which
reduces considerably the complexity of the algorithm and
then the processing time. This is equivalent to assign the
same pheromone concentration to the eight links around
every node. If an analogy with reality is made, this can be
seen as ants leaving food traces in each node they are
visiting, instead of a pheromone trail on the links.

3.2 The node selection process

Once the ants are placed in the origin node, each ant
starts navigating, and the decision process for choosing
the next node consist in a 3x3 window of the whole graph.
The ant can choose one of the eight nodes around it, and
the transition probability (2) is now:



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

SO
SIEPIRHI )

0 if jeNf

Where & represents the Euclidean distance between the
candidate node and the destiny node, B € [0,0) ampli-
fies the influence of €.

The memory capability y has been added to ants. The
value y represents how many nodes can remember the ant.
After v iterations of the building routes process, this
memory is “erased”, and the count starts again. The
algorithm evaluates the free space covering two nodes of
distance from each candidate node around de robot,
which is enough to overlay the Boe-Bot dimensions.

3.3  The fuzzy cost function and the Simple Tuning
Algorithm (STA)

The cost of the path f(x“(t)) to determine the optimal
one is evaluated by a Fuzzy Inference System (FIS), which
contemplates not only the length of the path but the
difficulty for the navigation. The FIS considers two
inputs: effort and distance. The first one represents the
energy spent by the robot to make turns across the path;
for example, the effort become increased if the robot has
to make a left turn after a long straight line, because it
has to decelerate more. Distance is the accumulated
Euclidean distance at the moment between the visited
nodes. The output is a weight assigned to the cost of the
path; the more weight is given, the less desirable becomes
the path. The output of the FIS is added to the total
Euclidean distance of the path, giving the final weight of
each one generated by ants. If there are different routes
with the same length, the FIS should make a difference of
cost giving preference to the straighter paths, like shown
in Figure 1. The FIS variables can be seen in Table 1 and
the associative memory of the FIS is shown in Table 2.

Traveled distance in A:
W2+ 2 +1+1=682u

Traveled distance in B:

2+ 1 +.2 +1 =682u

Fig. 1. Path A has same length than path B; however,
Aimplies less effort for robot navigation.

The STA, which is fully addressed in [19], is applied on
fuzzy controllers as an attempt to facilitate the tuning
process of the FIS, since sometimes becomes over-
whelming to find the optimal parameters necessaries for
a well performance of the controller. By applying the STA,
time and effort is reduced by using a single parameter, the
tuning factor k. It is based on the properties of the
control surface, allowing the modification of the

controller's behavior by means of manipulating the ranges
of the membership functions of the input variables.

Table 1. FIS variables.

Input Variables Output Variables

Effort Distance Weight
NE: VSD: Very Small MW: Minimum
Normal Effort Distance Weight
NEE: SD: Small Distance SW: Small Weight
Normal Extra Effort | D: Distance W: Weight
BE: Big Effort BD: Big Distance BW: Big Weight
BEE: Big Extra Effort | VBD: Very Big VBW: Very Big
VBE: Very Big Effort | Distance Weight

Table 2. Fuzzy associative memory of the FIS.

Distance
VSD SD D BD VBD
NE MW MW sw sw MW
+ | NEE MW sw w sw MW
£ |BE Sw w w w sw
“ | BEE BW BW w BW VBW
VBE VBW VBW BW VBW VBW

In this work, the FIS itisn't used as a controller, but as
a decision support system to differ the straighter paths
from the winding ones. The output surface without
applying STA is shown in Figure 2 and with STA in Figure 3.

Distance Effort

Fig. 2. Output surface before the application of STA.

Fig. 3. Output surface of the modified FIS by STA with
a tuning factor k= 0.75.

Articles



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

3.4 Dynamic obstacles generation

The algorithm has the capability of sensing changes in the
environment, if a new obstacle is placed over the robot's
route at time ¢, it starts a rerouting process in order to
avoid the blocking object and get to the destiny node.
It has to be considered that after some epochs, the
pheromone concentration 7, is already increased over the
visited nodes; then, when a new obstruction appears,
it causes evaporation of the pheromone trail around it.
This premise prevents stagnation around the obstacle,
and 7, of the surrounding area is given by the minimum
pheromone value over the search map at .

4. The complete framework

A graphicalinterface, as well as the translation of the
obtained solution (optimal path) from the virtual to the
real world was implemented to test the proposed path
planning method. Figure 4 shows the main screen of the
graphic interface made with MATLAB, called ACO Test
Center (ACOTC). ACOTC has two operation modes: Mode I
and Mode II. Mode I only uses the virtual environment,
while Mode II is design to work with the real robot online
with the software. Figure 5 and 6 shows the flow diagram
of each operation mode.

Optimal ACO Path Planning

Fig. 4. Main screen of the software interface.

The ACOTC allows the user to design maps for indoor
conditions over plain terrain, which later can be built on
the real 4m’ laboratory area (for Mode II), showed in
Figure 7. All obstacles are assumed to be cubes of size 1,
2, 5,10, 15, 20 and 25 map units. In Figure 7, it can be
seen that the obstacles are only marked by square
cardboards on the floor (according to obstacle dimen-
sions and position of the designed map in ACOTC)
covering the area of the map that the Boe-bot should not
cross over its path. This is because there is no necessity
of sensing obstacles for navigation, since the robot
already knows the route that it must be followed. Sensing
objects is only for new obstacles appearing on the path,
whichis discussed later in this chapter.

In Mode I, once the map is created and all ACO
algorithm parameters are set up, the optimization
process initiates pressing the Start button. Under the
map display in the main screen the ACOTC displays the

Articles

Create new
map

Open map

A 4

Save map

Set ACO
parameters

Build routes

Starts ACO

v Compute alternative
route from actual node

New sensed
obstacle

Yes

Dynamic environment in execution tima

Stop condition =

No true

Dynamic environment Yes

- ¢Ambiente

Show best route,
execution time and
weight of the path

modificado?

Boe-bot
animation

Fig. 5. Flow diagram of ACOTC in Mode I.

{ wowmap

| Open map ‘

Has it been
reached the
goal?

[les

Follow
navigation
commands

»

Build routes
Compute alternative
route from actual
node
Stop condition =

true

-

Boe-bot

—

Sending navigation

Show best route,
execution time and
path weight

Boe-bot Communication
animation No

Software

A 4

commands

'Y
Basic Stamp

0 Yes I
Starts Bluetooth

Real environment

Fig. 6. Flow diagram of ACOTC in Mode IT



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

status of each epoch, showing the weights of the routes
of each ant at the moment. The algorithm can be ended
when the specified maximum number of epochs has been
reached, or by pressing de Stop button. Then, the
program shows the solution path that the algorithm
found, and now the ACOTC is ready for sending navigation
commands to the Boe-bot. Mode II begins when the
Navigate button is pressed, and the Bluetooth
communication is established with the robot and starts
navigating. The program translate the sequence of
coordinates x and y of each node part of the final route
into navigation commands for the mobile robot to move
over this nodes as imaginary checkpoints in the real map.
Taking advantage of the fact that the map has been
discretized, the navigation commands are reduced to:

e 101: Indicates the Boe-bot to go forward one node.
From left to right, the first 1 tells the direction, and
the second and third digits are reserved for how many
nodes the Boe-bot must go in forward direction. For
example, to make the robot moves forward ten nodes,
the sent command should be 110.

200: Turn Left 45°.

300: Turn Left 90°.

400: Turn Left 135°.

500: Turn 180°.

800: Turn Right 45°.

700: Turn Right 90°.

600: Turn Right 135°.

000: Gives the order of perform the Bluetooth
connection between the two Basic Stamp Modules,
the one attached to the computer by the USB port and
the oneinstalled in the Boe-bot.

® 900: Finishes the Bluetooth connection.

Fig. 7. The real 4m’ laboratory area with the Boe-bot.

A carrier board with a Basic Stamp BS2p24 microcon-
troller module of Parallax is used to make the interface
between the Boe-bot and the computer that performs the
algorithm processing. The tests were achieved in an HP
Athlon64 notebook.

As mentioned before, the mobile robot used in this
work is a Boe-bot of Parallax, with a BS2p24 microcon-
troller. The BS2p24 has a program execution speed of
12,000 instructions per second approximately, with
a processor speed of 20 MHz. It also includes a 38 bytes
(12 1/0, 26 Variable) RAM size and 8 x 2K Bytes, giving
approximately 4,000 instructions. This circuit has 16 I/0
pins plus 2 for dedicated serial. The total number of
PBASIC commands on the BS2pis 61 [20].

For the wireless communication between the com-
puter and the Boe-bot, it is used two eb500 modules,
which provides Bluetooth connectivity for 8/16 bit
microcontroller applications. It provides a point to point
connection much like a standard serial cable. Connec-
tions are made dynamically and can be established
between two eb500 modules or an eb500 module and
a standard Bluetooth v1.1 device. Devices can be
dynamically discovered and connected in an ad-hoc
manner. It has an open field range of 328 feet (more than
100 meters). The power consumption goes from 5 volt to
12 volt. It supports Bluetooth version 1.1 compliant with
profiles L2CAP (Logical Link Control and Adaptation
Protocol), RFCOMM (protocol for RS-232 serial port
emulation), SDP (Service Discovery Protocol), SPP (Serial
Port Profile) [21].

5. Experimental results

5.1 Operationin Model

The experiments results reported in this chapter have
the same parameter adjustment fork =3, 7,=0.5, p=0.2
and o= 2. The first considered scenario is the one with no
obstacles. Figure 8(a) shows the path generated by the
first ant in the first iteration of the algorithm, with § =0
and y = 1. As it can be seen, unnecessary and excessively
exploration of the map is made by the ant, since there is
no obstacles in the whole area. Figure 8(b) displays how
a bigger value of y reduces considerably the excessive
exploration, by adding the memory capability to the ant,
but without the help of v, in Figures 8(c) and 8(d) it can
be observed how increasing the value of {§ is enough to
make the algorithm more efficient. For f = 1, the optimal
path (the diagonal between the nodes) can be found in
less than three epochs, and it takes approximately
1 second to get the optimal solution, which is shown in
Figure 9(a).

()

"
’

Bt

s

{

=
sl
al
»
a2
a5
ol

Fig. 8. (a) Route generated by the first ant in the first
epoch, with 3 =0and y=1, (b) same situation but with
B =0and =100, (c) The routes of three ants in the first
epoch with B=0.1and y=1, (d) same situation but with
B=0.5and y=1.

Articles



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

Figure 9(b) shows the same first scenario, but now it has
been added 3 new obstacles dynamically in different
timest, t+1 and t+2. The ants were able to surround the
blocking object and finally reach the goal.

% & a0 1% 2 $ s 3% 46 4% % b & 8 15 24+ 35 a5 48 48 8

Fig. 9. (a) Optimal path found by the algorithm after one
or two epochs with =1 and y=1, (b) generated routes
after addition of obstacles dynamically at time t, t+1 and
t+2.

At the moment, an analysis about 3 and v has been
made. Figure 10(a) presents a more complex map and the
optimal path given by the algorithm, where the algorithm
is more sensitive to variations of the parameters.
Changes in the values of y, p and k mostly, influence the
execution time and the effectiveness of the algorithm
considerably. In Figure 10(a), with k =3, f=0andy=1,
adjusting o = 0.5 and p = 0.2, the algorithm takes
approximately 180 seconds and 130 epochs to find the
optimal path. This causes more exploration but less
exploitation. Making o= 2 and p = 0.35, it takes around
75 seconds to find the optimal path in 20 epochs.

Figure 10(b) shows a frame from the Boe-bot model
animation navigating over the path, ensuring the mobile
robot dimensions fits in the free space area crossed by
the route. Another example of dynamic search map can
be observed in Figure 11(a), where the robot model is
crossing over the alternative route given by the
algorithm.

(a) ()
;

%5 w95 m a5 3 a4 45 s b 5 10 45 2 25 % 8 e 45 W

Fig. 10. (a) Optimal path found by the algorithm, (b)
A frame of the Boe-bot model animation following the final
route.

Figure 11(b) displays a completely different map,
with major randomness in the obstacles positioning. At
first sight it can be noticed the path is not the optimal
one. There are some turns that are not desirable, like the
one around the circle. This kind of situations are
intended to be corrected by the fuzzy cost function, but
the method is not fully tested yet and every different
scenario has its own particular features; they may need

Articles

different parameters settings in order to get optimal
solutions at a reasonable time. However, these are
satisfactory results that allow seeing the proposed
method as an effective path planning tool and it is
getting improvements. Using the STA also reduce the
number of cases of suboptimal paths like the one in
Figure 11(b).

(a)
||

I I o
I . m
E

H |
W % 4 45w @5 M ¥ 4 45 s B & 40 45 0 25 % M 4 41 %

Fig. 11. (a) Alternative route given by the algorithm after a
new obstacle appears at time t and the Boe-bot model
Sfollowing the modified path, (b) Another search area, with
major randomness in the obstacles positioning. The circle
indicates a not desirable movement in the path.

5.2 Operationin ModeII

The map design used for experiments with the Boe-
bot is the one shown in Figures 4 and 10, reconstructed
over the real search map with the square cardboards as it
can be observed in Figure 7. The robot has to move along
the course of the optimal path given by the algorithm,
like there was a stripe to follow using sensors placed over
the floor of the map.

Currently, in this research there are some particular
problems in navigation to be solved. The wireless
communication and the process of sending navigation
commands to the robot had already been successfully
established. By the other hand, in order to assure the
Boe-bot will navigate following the path delivered by the
ACO algorithm over the search map as accurate as
possible. For a forward order, it has to move in straight
line as many nodes as it was specified in the command;
for a turn order is expected to move the precise angle.
Then the carpeting of the laboratory area reserved for
building the maps increase error.

There are still different choices of solution that can
be considered, with their own advantages and
disadvantages according to time and resources. An
option for the turnings can be the use of a low-cost
Vector 2X Compass Module from Precision Navigation,
Inc., suitable for OEM applications. This 2 axis compass
delivers 2-degree accuracy with 1-degree resolution. The
first experiments with the compass revealed that the
response time for the readings of the angle is slow for the
correct robot motion.

Another topic is the sensing of a new obstacle over
the route, like the simulation case shown in Figure 11(a).
For this situation, a complete cardboard cube will be
placed manually obstructing the robot's path. The
sensing may be done with ultrasound or infrared light
sensors.



Journal of Automation, Mobile Robotics & Intelligent Systems

VOLUME 2, N°1 2008

6. Conclusions

The ACO-MH proposed method seems to be a pro-
mising path planning system for autonomous mobile
robot navigation since the given solutions are not only
paths, but the optimal ones. It is a very fast algorithm
since it is able to find an optimal path with few cost
function evaluations in many cases, regarding addition
of B and y. At present time, the method has been used
with a real robot (Boe-bot), and the alternatives for
precise navigation are still under evaluation and testing
process. It also has the ability of finding optimal paths in
dynamic search spaces, considering the physical size of
the robot. On the other hand, applying the STA makes
a more precise difference between costs of paths with
same length but different effort for navigation, causing
major preference for straighter paths.

AUTHORS

Miguel Porta-Garcia, Oscar Montiel, Roberto
Sepulveda - CITEDI-IPN. Ave. del Parque 1310 Mesa de
Otay, Tijuana B.C. 22510. E-mails: mporta@citedi.mx,
o.montiel@ieee.org, r.sepulveda@ieee.org.

References

[1] Victor Fernando Murioz Martinez, Planificacion de Traye-
ctorias para Robots Méviles, Doctoral thesis presented
on 5" July, 1995. Available at:
http://webpersonal.uma.es/~VFMM/

[2] M. Dorigo, M. Birattari, T. Stiitzle, “Ant Colony Optimi-
zation”, IEEE Computational Intelligence Magazine,
November 2006, pp. 28-39.

[3] A.P. Engelbrecht, Fundamentals of Computational
Swarm Intelligence, Wiley, J England, 2005.

[4] A.R. Diéguez, R. Sanz, J.L. Fernandez, “A global motion
planner that learns from experience for autonomous
mobile robots”, Robotics and Computer-Integrated
Manufacturing, vol. 25, issue 5, 2007, Elsevier, pp.
544-552.

[5] Ashraf Elnagar, Leena Lulu, “A visual tool for computer
supported learning: The robot motion planning
example”, Computers & Education, vol. 49, no. 2, 2007,
Elsevier, pp. 269-283.

[6] Shuzhi Sam Ge, Xue-Cheng Lai, Abdullah Al Mamun,
“Sensor-based path planning for nonholonomic mobile
robots subject to dynamic constraints”, Robotics and
Autonomous Systems, vol. 55, issue 7, 2007, Elsevier,
pp. 513-526.

[7] K. Gopalakrishnan, S. Ramakrishnan, Optimal Path
Planning of Mobile Robot with Multiple Targets Using Ant
Colony Optimization. Smart Systems Engineering, 2006,
New York, pp. 25-30.

[8] L. Zhishuo, C. Yueting, “Sweep based Multiple Ant
Colonies Algorithm for Capacitated Vehicle Routing
Problem”, IEEE International Conference on e-Business
Engineering (ICEBE'05), 2005, pp. 387-394.

[9] H. Chen, Z. Xu, Path Planning Based on a New Genetic
Algorithm, International Conference on Neural Net-
works and Brain, 2005. Volume 2, 13-15 Oct. 2005,
pp. 788-792. Digital Object Identifier 10.1109/ ICNNB.
2005.1614743

(10]

(11]

(12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

M. Gemeinder, M. Gerke, “An Active Search Algorithm
Extending GA Based Path Planning for Mobile Robot
Systems”. In: Soft Computing and Industry - Recent
Applications, Roy R. et al., (Eds.) Berlin Heidelberg New
York: Springer Verlag, 2002, pp. 589-596.

M. Tarokh, Path planning of rovers using fuzzy logic and
genetic algorithm, World Automation Conf. ISORA-026,
Hawaii, 2000, pp. 1-7.

S. Cardenas 0. Castillo, L. Aguilar L, J. Garibaldi,
“Intelligent planning and control of robots using
genetic algorithms and fuzzy logic”, International
Conference on Artificial Intelligence (IC-AI '05), 2005,
pp. 412-418.

0. Castillo, L. Trujillo, “Autonomous mobile robot path
planning optimization using multiple objective genetic
algorithms”, International Conference on Artificial Intel-
ligence (IC-AI'04), 2004, pp. 71-76.

J. Garibaldi, A. Barreras A., 0. Castillo, “Intelligent
Control and Planning of Autonomous Mobile Robots
using Fuzzy Logic and Genetic Algorithms”. In: Hybrid
Intelligent Systems (Edited by 0. Castillo et al),
Springer-Verlag, 2007, pp. 255-265.

M. Tarokh, “Genetic Path Planning with Fuzzy Logic
Adaptation for Rovers Traversing Rough Terrain”. In:
Hybrid Intelligent Systems (Edited by Castillo et al.),
Springer-Verlag, 2007, pp. 215-228.

M. Mohamad, W. Dunningan, “Ant Colony Robot Motion
Planning”, Computer as a Tool, 2005. EUROCON 2005.The
International Conference on, vol. 1, IEEE, 2005, pp.
213-216.

W. Ye, D. Ma, H. Fan, “Path Planning for Space Robot
Based on The Self-adaptive Ant Colony Algorithm”.
1" International Symposium on Systems and Control in
Aerospace and Astronautics, 19-21 January, 2006
(ISSCAA), pp. 4.

M. Dorigo, T. Stiitzle, Ant Colony Optimization, Bradford,
Cambridge, Massachusetts, 2004.

E. Gdmez Ramirez E., “Simple Tuning of Fuzzy Control-
lers”. In: The International Conference on Fuzzy Systems,
Neural Networks and Genetic Algorithms (FNG 2005),
Tijuana, México, 2005, pp. 49-64.

Parallax Inc. 2006, Basic Stamp Syntax and Reference
Manual. Version 2.2. Available at:
http://www.parallax.com/dl/docs/prod/stamps/web-
BSM-v2.2.pdf

A7 Engineering, EmbeddedBlue™ 500 User manual.
Available at:
http://www.a7eng.com/products/embeddedblue/
downloads/eb500UserManual.pdf

Articles



