
41Articles

Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 1, No 4 December 2007

Neural Network Based Selection 
of Optimal Tool - Path 

in Free Form Surface Machining

Marjan Korosec, Janez Kopac 

Abstract:
The purpose of the presented paper is to show how with 

the help of artifi cial Neural Network (NN) the prediction of 
milling tool-path strategies could be performed in order to 
determine which milling tool - path strategies or their se-
quences will yield the best results (i.e. the most appropriate 
ones) of free form surface machining, in accordance with 
a selected technological aim. Usually, the machining task 
could be completed successfully using different tool-path 
strategies or their sequences. They can all perform the  ma-
chining task according to the demands but always only one 
of the all possible applied strategies is optimal in terms of 
the desired technological goal (surface quality in most cas-
es). In the presented paper, the best possible surface quality 
of a machined surface was taken as the primary technologi-
cal aim. Confi guration of the applied Neural Network is pre-
sented and the whole procedure of determining the optimal 
tool-path sequence is shown through an example of a light 
switch mould. Verifi cation of the machined surface quality, 
in relation to the average mean roughness Ra is also being 
performed and compared with the NN predicted results. 

Keywords: (NN) neural network, CAD/CAM system, CAPP,  
Intelligent CAM (ICAM),  milling strategy

1. Problem formulation 
Many efforts have been made in order to simplify and 

make NC programming procedures easier. Nowadays, the 
trend in CAM systems development is to make different 
CAM systems capable of recognizing particular features 
which compose a 3D model of the part and then gene-
rate the most important machining procedures and pa-
rameters [1] according to geometric shape recognition. 
Some researchers employ Neural Networks and Genetic 
Algorithms (GA) at this stage but they all face the prob-
lem of recognizing very complex free form surfaces, which 
are far away from being only the basic geometric shapes, 
such as a cylinder, a cube, a cone etc. So the problem 
arises how to present a complex surface confi guration of 
free form model to a Neural Network. NN should be capa-
ble of predicting the right or optimal machining strategy 
in order to achieve a high surface quality. So NN must be 
somehow acquainted with the complex surface confi gura-
tion of machined workpieces [2]. One possible solution 
of this problem is shown in this paper. For machining 
3D complex surfaces, it is often not enough to use basic 
tool-path milling strategies only [3]. Specifi c combina-
tions, which even change during travelling of the cutting 
tool across the surface, should often be used. Combining 
milling strategies, there are no simple relations between 
machining parameters, because they are changing in time 

and depend on a particular sequence of milling strategies. 
Their mutual relations are mostly non-linear. The question 
also arises as to which milling tool-path strategy will be 
the most adequate to satisfy the demands according to 
selected technological aims [4]. Generally, it is possible 
to make optimization according to these main technologi-
cal aims:

• best possible surface quality,
• minimum tool wear,
• shortest achieved machining time and,
• minimum machining costs.
Since this problem was initiated by the tool shop in-

dustry, which produces tools for car lights equipment, our 
technological aim was to achieve the best possible surface 
quality of machined workpieces. Different milling strate-
gies can be applied to machine the same complex surface 
on a workpiece, but surface quality after each different 
applied combination of milling strategies will differ a lot. 
It has been realized that by changing the feed rate and 
cutting speed only, it is very hard to achieve the best pos-
sible surface quality in 3D complex surfaces.

2. Current state-of-the-art
Many researchers and developers of CAM systems try 

to incorporate some intelligence in their applications in 
order to improve  technological knowledge. Some of them 
are trying to introduce NN, GA and expert systems in their 
solutions in order to be able to predict crucial machining 
parameters. A modifi ed Backpropagation NN is proposed 
for on-line modelling of the milling system and a modi-
fi ed NN is proposed for the real-time optimal control of the 
milling system [4]. Also a self-organized Kohonen NN is 
used for path fi nding and for feed rate adjustment [5,6].

New approaches tend toward integrating CAD, CAPP 
(computer added process planning) and CAM system [7]. 
By integrating those three systems, feature-based tech-
nology becomes an important tool. The goal of this inte-
gration is to replace a typical procedure of manual process 
planning (Figure 1a.) with CAPP, which represents a basis 
for automatic generation of NC machining programme 
(Figure 1b.) [8,9]

In such integrated system, the so-called feature based 
design or design by features should be used instead of 
conventional CAD methods. Design feature understands 
the properties of the region to be machined, such as the 
geometric shape, the dimensions, the dimensional and 
geometrical tolerances, etc. However, such features, be-
ing primarily design-oriented, have to be converted into 
manufacturing features in order to build the interface 
between the feature-based design and automated process 
planning. According to the defi nition, manufacturing fea-
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tures are surfaces or volumes, which are produced by one 
or a series of material-removal operations [10]. Without 
properly defi ned manufacturing features it is not possible 
to perform automated NC code generation.

Activities in the area of CAPP and intelligent CAM can 
be divided into four areas:

• -feature recognition,
• -extracting manufacturing features from a feature-

based design model, 
• -operation selection as part of CAPP and
• -operation sequencing as a part of CAPP.
Four modules are included in obtaining manufactu-

ring features, presented in Fig. 1b. Feature recognition 
has been one of the major research issues in the area of 
automated CAD/CAPP interface. So far, it has also been 
also the basis for applying intelligent CAM (ICAM) systems. 
Some main approaches in this area include the Cover Set 
Graph (CSG)-based approach, the graph-based approach 
and the neural-network-based approach. Most suggested 
methods for feature recognition apply a solid model as 
their input, which represents only the purely geometric 
aspects of the design information. In 1992, a Super Rela-
tion Graph (SRG) system, using artifi cial Neural Networks,  
was developed for the purpose of feature recognition. 
The objective of this system is to recognize and extract 
prismatic features from 3-D CAD databases [10]. This 
system recognizes some volumetric primitive features 
and classifi es them into: holes, pockets, blind-slots, 
blind-steps, thru-slots, and steps. Using the techniques 
of artifi cial neural networks and computational geom-
etry, the SRG identifi es only features based on two types 
of relationships between faces: super concavity and face 
to face. Basically, the SRG is a matrix representation of 
the relationship between the faces. Later, the SRG based 
system was improved by adding cover set model (CSM) 

approach. The CSM is built on the SRG system and deter-
mines the essential and non-essential features [11].

In the fi eld of operation sequencing, two methods, i.e. 
knowledge-based evaluation and fuzzy quantitative evalu-
ation, are widely applied. It means that attributes of a fea-
ture are quantitatively fuzzifi ed into a number of measures, 
which can build up a numeric data array for modelling im-
portant features. After that, the fuzzy evaluation function 
created with neural network can be used to automatically 
execute feature prioritization. It is clearly that NN based 
approach is advancing very fast in all CAPP segments, main-
ly because of the ability of incremental learning and the 
capability of modelling non-linear inter-relationships. The 
other advantage of NN based approach is providing a more 
precise technique and representing the complex inter-con-
nections between the fuzzifi ed feature parameters and the 
manufacturability of the features [12].

All these approaches are needed to provide the nece-
ssary link between CAD and CAM systems and integrate 
them into the CAPP system. The described systems add 
technological data to the features from some general data 
bases, but those added machining data are not optimized 
for every single feature within the CAD model. Actually, 
there is no need for feature optimization because of their 
simple topological and geometrical nature (cylinders, 
spheres and prismatic features only). But in the case of 
a complex surface recognition, machining parameters have 
to be optimized, most effectively by the NN approach [13, 
14, 15]. The common limitation of all the above-mentioned 
methods is that they can recognize and defi ne only volu-
metric features, based on solid models [16]. These methods 
can still not recognize features in surface models. When 
talking about complex free form surfaces, it is not possible 
to simply divide them into some elementary prismatic or 
cylindrical features because of their irregular shapes. The 

Figure 1a. Manual process planning.

Figure 1b. Extracting of manufacturing 
features.
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other problem with free form surfaces is also their non-lin-
ear technological and topological properties relationship, 
which are impossible to be captured with the above-men-
tioned methods [17,18]. Considering the fact that nowadays 
mould design industry uses circa 70% of surface modellers, 
it is obvious that there is a need for a more general method 
of manufacturing feature recognition.

The method presented in this paper is different from 
the above-mentioned approaches especially in the follow-
ing attributes: it is applicable in solid, as well as in sur-
face 3D free form models, the concept of NN training takes 
account of all geometrical and topological non-linear 
relationships, it can easily represent free form surface to 
the NN, it does not have to be supported from the feature 
based design concept (therefore it can be used in any CAM 
system, or in the frame of a widely used CAPP system), and 
the method is adaptive according to the selected techno-
logical goal.

3. Presentation of free form surfaces to the 
neural network
As mentioned before, many machine-technological pa-

rameters depend on the workpiece surface confi guration. 
But for a successful tool-path optimization with the use of 
NN, the main problem remains: how to present the surface 
confi guration to the Neural Network. So the workpiece 
surface confi guration must fi rst be recognized by NN.

3.1 Selection of representative 3D models and 

their corresponding milling-path strategies

According to the programming of machining with CAM 
system (Hypermill-Open Mind), we created fi ve repre-
sentative 3D models shown in Figure 2. They are the most 
frequently used tool path strategies and surface forms in 
our tool-shop company. These selected milling strategies 
proved to be the best for selected 3D models according to 
the checked surface quality (mean roughness Ra). For ma-
chining material, we used 54 HRc steel. The selected tool 
path strategies for models presented in Figure 2 are:

• Combination of Profi le fi nishing and Z fi nishing 
(slope mode option) representing model NN1. First, 
fl at surfaces are machined in the “profi le fi nishing” 
mode - surfaces which have the slope angle smaller 
than the boundary set angle - and then the rest of 
the surface is machined in the “Z fi nishing” mode.

• Profi le fi nish, or 3D fi nish, representing NN2 model.
• Profi le fi nish (scallop height mode), representing 

NN3 model.
• Z level fi nish, representing NN4 model.
• Profi le fi nish, (equidistant machining, in feed is 

constant on the whole surface area), representing 
NN5 model.

Shapes of the shown 3D models were machined with 
the proposed milling strategies and in this way the best 
surface quality results were achieved.

3.2 Multiplication of basic 3D models

In order to get enough training data for NN learn-
ing data-base and in order to make the application more 
universal, a C++ executable programme named Saturnus.
exe was written. Among other tasks, it also rotates every 
basic model in increments by 10° (degrees), starting 
from -50° to +50°. After the fi rst ten rotations, the ba-
sic model was turned upside down by 180° degrees and 
rotated again by 10 degrees increments. The starting, 
fi nal and incremental angles are arbitrarily chosen by 
the user as an input in our written programme (the input 
fi le organization will be presented later in this paper). In 
this way, each basic model produced 20 additional sub-
models. So each basic model together with the rotated 
sub-models provided 24 different models, thus 24 NN 
model vectors. With fi ve basic models, we provided 120 
NN model vectors. 

3.3 Projection of points in training models

This task was also automatically performed in our 
C++ executable program. At fi rst, the programme clipped 
models in the smallest possible rectangular shape, pre-
serving the a/b relations of rectangular sides constant 
for each model. After that, models were transferred into 
the so-called “model space”, where they were lifted over 
the rectangular ground plane and strewed with a raster of 
points, on the upper part of the model. The strewed points 
must be settled in appropriate raster, which is arbitrary. 
In our case, it was 1 mm in the X and Y directions. The more 
points there are, the more precise the interpolation, which 
is later performed in the same programme. The whole set 
(raster) of points was directly projected on each of the fi ve 
basic models. The number of points and their raster must 
be equal for every model. After the points were projected, 
the models were removed and only the distributed points 
remained in the picture. This was done because later, in 
the appropriate data transfer format, only points were 
presented, which was actually of our interest. Namely, we 
used coordinates of those points in order to get informa-
tion about 3D surface confi guration. As a software tool 
for all described manipulations with models, Mechanical 
desktop V4.0 was used.

The purpose of the point’s projection across the model 
was to gain up the surface confi guration of the models in 
the Z direction, which has proved to have the biggest in-
fl uence on the important technological parameters (feed 
rate and cutting speed).

Figure 2. Five models representing basic milling tool-path strategies.
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3.4 Preparing VDA fi les for input into NN

The strewed points were translated with the VDA fi le 
format, and then those VDA fi les  are used as an input 
in our executable programme Saturnus.exe, which per-
formed interpolation between points and their reorgani-
zation , and produced ASCII data fi les, organized in a way 
to be convenient for entering into NN as input data.

Therefore, our programme performed two very im-
portant tasks: it made an interpolation between strewed 
points so the necessary amounts of data points were re-
duced (but the Z height confi guration of surface was still 
retained), and it clipped, strewed and rotated the models. 
With the interpolation, the starting amount of points was 
reduced to a rectangle having 15 points in the Y direction 
and 15 points in the X direction for each model.

3.5 Structure of model vectors as an input to the NN

The programme Saturnus.exe produced ASCII fi les or-
ganized as model vectors suitable for direct entering into 
NN. Each model vector consists of an input and output 
part (variables). 

Concatenation of both vectors gives the original model 
vector. This can be written as:

 ( )mv P Q= ⊕ = +m m m m mM M L1 2 1, , ... , , , ... ,  
(1)

and in a matrix form:

where the shadowed part belongs to the output part of 
the model vector.

In the presented case, the input part of the model 
vector consists of 225 (15x15) interpolated coordinate 
points, and the output part consists of eight probabil-
ity variables, for one milling strategy each. So there are 
120 (5x24) model vectors, each of them consisting of 225 
input variables, and one discrete output variable. This 
presents a learning base for our NN. Training model vec-
tors and their organization are shown in Table 1.

3.6 Structure of output part of model vectors

Looking at Table 1, it is noticeable that the discrete 
output variable has eight variables of probability. Five 
of them are used to designate the milling path strat-
egy. Three output variables are left in case of expand-
ing the number of milling path strategies from five to 
eight. The meaning of the variables of probability is as 
follows:

(out 1) 10000000….profi le fi nish + Z fi nish (slope  
mode option)

(out 2) 01000000….3D fi nish, respectively profi le     
fi nish

(out 3) 00100000….profi le fi nish (scallop height 
mode)

(out 4) 00010000….Z level fi nish
(out 5) 00001000….profi le fi nish (equidistant ma-

chining, constant infeed)

Figure 3. Structure of model vectors in a matrix form.

Table 1. Organization of model vectors in the NN training data base.
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These are fi ve most often used milling strategies for fi nish 
machining. Those strategies will not be described in this pa-
per because this is not the intention of this paper. However, 
their details can be found in almost every CAM system.

4. Neural network setup and algorithm used 
for probability prediction of milling tool-
path  strategies 
The NN algorithm used for solving the problem of sur-

face recognition is different from the traditional artifi cial 
Neural network, in the sense that it is derived from the 
probabilistic approach and it uses a new self-organizing 
system algorithm. It is based on a self-organizing system, 
called the neural network-like system, presented by Grabec 
[19,20]. It is similar to the method of the nearest neigh-
bour, Learning Vector Quatization Network [21], and also to 
the probabilistic neural network, proposed by Specht [22]. 
All of the above-mentioned methods have the same founda-
tion and similar rules for describing various phenomena. On 
the other hand, they are different compared to each other, 
similarly to differences among various paradigms used in 
backpropagation artifi cial NN, or among various types of 
artifi cial NN. Most NN that can learn to generalize effec-
tively from noisy data are similar or identical to statistical 
methods. For example, probabilistic neural nets are identi-
cal to kernel discriminant analysis. On the other hand, Ko-
honen’s self organizing maps have no close relativities in 
the existing statistical literature, but self-organization of 
neurons, proposed by Grabec, is very similar to Kohonen’s 
self-organization process and is based on statistical prin-
ciples [21,23]. Also, feedforward nets are a subset of the 
class of non-linear regression and discriminant models.

Neural network can learn from cases. It predicts pro-
bability in %, which determines milling strategies or their 
combination that is to yield the best machining results, 
according to surface roughness. It means that the ma-
chining time of predicted strategies is not necessarily the 
shortest time because our technological aim was to yield 
the best possible quality of machined surface.

4.1 Defi nition of probability assumption

However, it is very unlikely that a perfect match exists 
in reality. Thus, a second probability-based assumption is 
needed. It states that if the input parts of model vectors P 
and C are “near”, there is a high probability that the out-
put part of C is similar to the output part of P. Conversely, 
if the input parts of P and C are “far”, there is only a low 
probability as shown in Figure 4. [24].

Figure 4. Probability assumption.

The words “near” and “far” from assumption are then 
converted into numbers. Thus, two vectors are near if the 
vector norm of their difference is a small value. Usually, an 
Euclidean norm is used in such cases. Equation (5) shows 
the Euclidean norm for the difference (distance) of the 
vectors P and C [25].

  
(5)

where:  
dPC   is the distance between the input parts of model 

vectors P and C
xpi is input part of model vector P
xci is input part of model vector C
When the distances between the model vectors are 

defi ned, a Gaussian probability function can be selected. 
Moreover, if the probability function and the distance are 
known, the similarity can also be calculated. Thus, the 
similarity between P and C is represented by [26, 27]:

  (6)

where:
SPC is the similarity between model vector P  and C
a is the penalty coeffi cient, replacing the standard 

deviation value
Equation (6) is a slightly modifi ed Gaussian function be-

cause the standard deviation cannot be calculated. There-
fore, the standard deviation is replaced by a constant value, 
which is called “the penalty coeffi cient”, and has a signifi -
cant infl uence on the shape of the probability function. The 
penalty coeffi cient is selected a priori by the user.

For each model vector in M, its distance from P and 
their similarity can be calculated. To simplify the fi nal 
calculation of the output part of vector P, the similarity 
coeffi cient must be normalized; that is, their sum must 
equal 1 [26]:

 
(7)

where:    
 normalized similarity coeffi cient of model vector P
  normalized similarity coeffi cient of model vector X 
Once the similarity coeffi cients are normalized, the fi -

nal result is obtained by a combination of the output parts 
of all model vectors :

 
(8)

 
 

where:
P0 is the fi nal calculation of the output part of model 

vector P
The index X in Equation (8) runs over all model vectors 

in the model. It should be stressed that the most important 
thing the user has to do is choosing a penalty coeffi cient 
that minimizes the mean square errors from the output 
variables. The programme uses a method, which prevents 
“over-training”. Namely, it fi rst deletes a case and then 
uses the remaining cases for training. This “trained” NN is 
then used to validate this deleted case. This operation is 
reiterated until all cases have been processed [22, 26].
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4.2 Neural network construction

In this particular NN, the training phase is very quick 
and corresponds to the presentation of the model vectors 
(loading the database) to the network (Manual from Neu-
ralWare, Neural, 1991). The prediction phase corresponds 
to the calculation of values of processing elements and to 
the calculation of unknown output values of prediction 
vector (in case of prediction) or output values of model 
vectors (in case of fi ltration of verifi cation to determine 
the penalty coeffi cient value). The weights on connections 
equal either one or zero. The expression for weight adap-
tation can be written as:

 (9)

where wij  equals 1.0, and  ij is defi ned as:

NN has two hidden layers (layer B and layer C). The 
number of neurons in layer B equals the product of the 
number of all model vectors N and the number of input 
variables M (N.M), while the number of neurons in layer 
C equals 2 times the number of model vectors. Graphical 
presentation is shown in Figure 5. 

Figure 5. Construction of neural network.

Notations in Figure 5 have the following meanings:
• p prediction vector,
• m model vector,
• i indicates the neuron, belonging to the input 

variable,
• o indicates the neuron, belonging to the output 

variable.
• N number of model vectors,
• M number of input variables of the phenomenon,
The processors (neurons) are connected by unidirec-

tional communication channels, which carry numeric data: 
this can be seen in Figure 5. It should be mentioned that 
connections (weights) are not changed; they have values 
either 0 or 1 [22]. All four layers have linear transfer func-
tions and the fi nal output of the neuron on layer D is :

 
(10)

where:
and mean neuron value before and after 

weight adjustment.

The presented procedure corresponds to the associa-
tive recognition of some unknown properties of the phe-
nomenon on the basis of incomplete observation or expe-
rience, obtained by previous complete observation. 

5. Training of neural network 
The form of model vectors prepared with executable 

program Saturnus.exe is shown in Table 1. This NN does 
not learn in a conventional manner but it actually learns 
simultaneously during the prediction phase. In conven-
tional NNs, a lot of time is spent for training (determina-
tion of weights) the NN. But once it has been trained, it 
predicts quickly. Here it is just the opposite: it predicts 
a little bit slower, but it learns very quickly. Partially, it 
happens also because the presented NN uses only two 
weight values: 0 and 1.

Before running the test set, all vectors had to be nor-
malized and penalty coeffi cient a must be chosen. The 
training test was also applied in order to determine the 
right value of the penalty coeffi cient. The actual value of 
the penalty coeffi cient depends on the density of model 
vectors. Automatic determination of the penalty coeffi -
cient is based on minimizing the RMS verifi cation error. 
Penalty coeffi cient is strongly correlated with the learning 
error in the back propagation neural network (BPNN) and 
is a very important parameter.

5.1 Results of a training test with known data

Figure 6. Predicting probabilities of milling strategies in 
a training set for the fi rst 3D model.      

First, data points are normalized. Since the variable 
values are not falling within particular limits, the statistical 
normalization was used.  Figure 6 shows probability values 
for the fi rst 3D model (NN1 shown in Figure 2) using data 
base of all 120 model vectors. It is clearly seen that NN pro-
poses using the fi rst milling path strategy (profi le fi nish + Z 
fi nish in slope mode option, as marked in Figure 2) for ma-
chining the model since the fi rst 24 model vectors (which 
represent the fi rst strategy) achieved the highest prob-
ability (0.8 to 0.85 in the verifi cation curve in Figure 6) and 
as such, will give the best surface roughness results. This 
prediction is quite correct considering the fact that in the 
learning set, the fi rst 3D model (i.e. the fi rst 24 model vec-
tors) is machined with profi le fi nish + Z fi nish strategy as the 
most convenient strategy. In Figure 6, two curves are pre-
sented. The verifi cation curve actually excludes the model 
vectors for which the milling path strategy is predicted. The 
fi ltration tool also includes the model vectors for which the 
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prediction is being made. If the fi ltration and verifi cation 
curves are getting along fairly well it means that the data 
noise is small, and vice versa [24,26]. The second proposed 
milling strategy according to the predicted probability in 
Figure 6 is equidistant machining with constant infeed over 
the surface area (verifi cation probability 0.4 to 0.45), and 
so on. In later experiments with models, which NN hasn’t 
“seen” yet, only their VDA fi les are needed. The procedure of 
preparing the VDA fi les for NN is done automatically, before 
running the NN.

6. Testing Neural Network model
The proposed NN model is tested on a two experi-

mental 3D models, which have never before been “seen” 
by NN. The milling path strategies will be predicted with 
a view to the best possible surface quality. Both 3D mod-
els represent the upper part of a mould for plastic injec-
tion, and are taken out of the tool-shop practice. The 
projection of point set was made on a 3D model as shown 
in Figure 7a and 7b.  Points were projected from a rectan-
gular net, lifted over the 3D model as described in chapter 
3. In this particular case the spacing between points ar-
rayed on a rectangular raster was 1 mm in the X and 1 mm 
in the Y direction, because of very steep walls. The spac-
ing between points is picked out arbitrary and depends on 
a model surface confi guration.  The results of projecting 
the points are shown in Figure 7. The points were projected 
and strewed as described in chapter 3. 

Figure 7a. 3D free form model and point model of a light-
switch body.

  

Figure 7b. 3D free form model and point model of a water 
tank body.

When DWG fi les of point set  were translated into a VDA 
fi les, a record of 3832 strewed points (x, y, z coordinates) 
in a case of light switch body and 18.235 points in a case of 
water tank came out. Those points describe the 3D surface 
confi guration, which is then imported into NN. 

6.1 Results of the test set

When the training model has proved to work well, 
the  milling path strategies for both models from fi gure 
7. are predicted.. It has to be emphasized one more time 
that these models have never been “seen” before by the 
NN (they are not included in the training model from Ta-

ble 1) and therefore represent a really serious proof for  
NN model.

Table  2. Predicted probabilities of milling path strategies 
for model 1.

Figure 8. NN results for predicted probabilities of tool path 
strategies for light switch model and water tank model.

The following fi nish milling tool-path strategies were  
used:

out 1……profi le fi nishing + Z fi nishing (slope mode 
option)

out 2……3D fi nishing
out 3……profi le fi nish (scallop height mode)
out 4……Z level fi nish
out 5……profi le fi nish (equidistant machining, con-

stant infeed)
Looking at Table 2,  and observing the prediction for 

the light switch model, it is very obviously that NN gave 
the highest probability to strategy number 5 (Mv 1 gave 
0.45, and total sum 5.46), that is equidistant machining 
with constant infeed. The second and the third predicted 
strategy probability are almost the same (total sum 3.56 
and 3.47). Figure 8 shows a graph of predicted probabili-
ties of milling strategies. When observing the prediction 
for for water tank (model 2), the highest probability was 
given to the profi le fi nishing + Z fi nishing with slope mode 
option (this is strategy “out 1” in Figure 8). The second 
and third probabilites were 3D fi nishing (“out 2”) and pro-
fi le fi nishing with scallop height mode (“out 3”), which 
were actually used by NC programmers.  
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In order to get suffi ciently satisfactory predicted results, 
the basic 3D model of a light-switch was rotated around each 
axis (step of rotation in degrees and axes are arbitrary se-
lected, before running our executable program Saturnus.exe 
) and strewed with points again. In this way, we got 15 model 
vectors, and hence the prediction is more reliable. It is im-
portant to notice that in most predicted model vectors the 
strategy with the highest probability is the same, in our ex-
ample the milling path strategy number 5 (see Table 2). This 
also implies that the predicted probability might be correct. 
If the highest predicted probability were divided among dif-
ferent milling path strategies in each model vector the result 
would probably be doubtful, and the step in the X and Y di-
rections should be changed or the learning model should be 
redefi ned. In the presented example this was not the case.

6.2 Checking machined surface quality for NN predict-

ed tool-path strategies and  their assessment

Usually, the most frequently used strategy for fi nish 
machining of proposed experimental parts used by NC 
programmers was a conventional 3D fi nish (strategy in 
output 3 in Table 2). Sometimes some NC programmers 
also used a combination of 3D fi nish with Z level fi nish 
machining (strategy in output 1). The part was machined 
with all 3 milling path strategies, and the centreline av-
erage roughness was compared. Finish machining was 
performed using a ø 2 mm ball mill two fl utes cutter, with 
machine parameters: n = 18.000 min-1, vf = 1900 mm/min, 
aa = 0.04 mm, pf = 0.2 mm, employing 3+2 axes simultane-
ously. The parameters were picked out as appropriate for 
a high-speed-cutting process and a machining workpiece 
of 54 HRc. A new tool was used for every milling strategy 
to exclude the infl uence of tool wear on surface rough-
ness. The results are shown in Figure 9 and Figure 10. 

Figure 9. Surface roughness achieved using three  milling 
tool-path strategies for model 1.

In the presented case, NN predicted the probabilities in 
order of precedence, according to the achieved centreline 
average roughness Ra on a machined surface. The best 
Ra at model 1 (light switch) was achieved with the mill-
ing strategy “out 5”. In this strategy almost 50% percent 
of machined surface has the Ra value of about 0.45 mm, 
30% achieved Ra≅0.7 mm, and 25% of machined surface 
achieved the value of Ra≅0.85 mm. The next two strategies 
according to the surface quality were milling strategy “out 
1” and “out 3”. As shown in Figure 9, the machining results 
are well in agreement with the predicted results from NN in 
Figure 8. Despite selecting a rather simple machined sur-
face, it is obviously that NC programmers mostly selected 
milling strategies “out 1” and “out 3”, which satisfi ed the 
requirements in the tool shop industry, but yielded worse 
results with a view to surface quality (see Figure 8) than 
strategy “out 5”, proposed by the developed NN. In such 
a cases, NN can be of great help for NC programmers, op-
erators and technologist in tool-shops, especially in the 
sphere of fi ne machining of 3D complex and functional 
surfaces, where  the surface quality plays a major role. 

Inspecting the model 2 (water tank) for average 
surface roughness Ra, it is noticed that the smallest Ra 
is achieved by using profi le  + Z level fi nishing (“out 1”) 
tool-path strategy. By using this strategy, almost 50% of 
surface has the Ra value of about 43 mm. The second best 
strategy regarding the achieved Ra is 3D fi nishing (“out 
2”).  Comparing results with predicted probabilities in 
Figure 8, it is clear that actually tool-path strategy “out 
1” and “out 2” yielded the highest probability, which is in 
agreement with surface roughness results from fi gure 10. 

7. Conclusion
A method for optimal choosing and optimizing the 

milling tool – path strategies based on the use of NN has 
been presented. The presented method could be used in 
solid or surface models and can be applied in all modern 
CAM systems. The surface quality was set as the primary 
technological aim, and it was focused on it, considering 
the tool-shop industry. Of course, one may wish to set 
up a different technological aim, such as achieving the 
smallest tool wear, or shortening the machining time etc. 
When changing the technological aim, the learning model 
should be reorganized according to the new technological 
aim and NN should be trained again. The more stirring and 
confabulated machined surface, the more complex and 
interlaced are the machining parameters,  more diffi cult is 
to combine the right order of precedence for milling stra-
tegies, or to select the most suitable strategies to achieve 
the best possible machining surface results. In the case of 
large complex surfaces, reliability is improved when sur-
faces are divided into technologically and geometrically 
reasonable subsurfaces before applying the method. It 
must be also stressed that representative models for NN 
training phase depends on the type of milling path strate-
gies which will be used inside particular CAM system. So 
representative models must be choosen in accordance 
with the capabilities of CAM system which will be used for 
machining. 

After predicting milling path strategies, it is also pos-
sible to make a new NN learning model for predicting max-
imum possible feedrate and rotational speed of spindle. Figure 10. Surface roughness achieved using four  milling 

tool-path strategies for model 2.
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Input variables in a new NN are: probability of predicted 
milling path strategies, hardness of workpiece material 
and stock allowance left during machining. Output va-
riables in a new NN are: maximum possible feedrate and 
rotational speed of spindle [28]. Predicted feedrate and 
rotational speed could be then used as the upper limit 
value for milling path optimization in applications such as 
OPTIPATH or OPTIMILL (Vericut v. 5.0, CG Tech Ltd).

For solving those problems, NN can serve as an ideal 
tool for helping  NC programmer make the right decision, 
or at least serving as an orientation tool. The advantage 
of NN based approach presented in the paper is its abil-
ity to learn and recognize all possible complex non-linear 
topological and geometrical relationships, which cannot 
be recognized by other graph based or similar techniques. 
In this way, it is also possible to save time because many 
additional post machining operations are reduced to 
a minimum or even zero amount of time.
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