Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modelowanie rozwoju mikrostruktury dla przepustu kwadrat-romb przy walcowaniu na gorąco prętów ze stali AISI 4135
Języki publikacji
Abstrakty
In this study, kinetics of the static (SRX) and metadynamic recrystallization (MDRX) of AISI4135 steel was investigated using hot torsion tests. Continuous torsion tests were carried out to determine the critical strain for dynamic recrystallization (DRX). The times for 50% recrystallization of SRX and MDRX were determined, respectively, by means of interrupted torsion tests. Furthermore, austenite grain size (AGS) evolution due to recrystallization (RX) was measured by optical microscopy. With the help of the evolution model established, the AGS for hot bar rolling of AISI4135 steel was predicted numerically. The predicted AGS values were compared with the results using the other model available in the literature and experimental results to verify its validity. Then, numerical predictions depending on various process parameters such as interpass time, temperature, and roll speed were made to investigate the effect of these parameters on AGS distributions for square-diamond pass rolling. Such numerical results were found to be beneficial in understanding the effect of processing conditions on the microstructure evolution better and control the rolling processes more accurately.
W pracy badano kinetykę statycznej (SRX) i metadynamicznej (MDRX) rekrystalizacji stali AISI4135 w próbie skręcania. Ciągłe próby skręcania wykonano w celu wyznaczenia krytycznych odkształceń dla dynamicznej rekrystalizacji (DRX). Czasy do 50% rekrystalizacji SRX i MDRX zostały wyznaczone w dwustopniowych próbach skręcania. Dodatkowo, zmiany wielkości ziarna austenitu (AGS) spowodowane rekrystalizacja były mierzone na mikroskopie optycznym. Stosując opracowany model ewolucji mikrostruktury, wyznaczona została wielkość ziania austenitu przy walcowaniu na gorąco prętów ze stali AISI4135. Wyznaczone wartości AGS został}1 porównane z wynikami otrzymanymi z dostępnego w literaturze modelu i z wynikami doświadczeń, które posłużyły do weryfikacji modelu. "Następnie określono wpływ takich parametrów jak czas przerwy, temperatura i prędkość walcowania na rozkład AGS przy walcowaniu w układzie przepustów kwadrat-romb. Wyniki numerycznej symulacji ułatwiły zrozumienie wpływu warunków procesu na rozwój mikrostruktury i bardzie] dokładne sterowanie procesem stało się możliwe.
Wydawca
Czasopismo
Rocznik
Tom
Strony
140--149
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
autor
autor
autor
- National Research Laboratory for Computer Aided Materials Processing, Department of Mechanical Engineering, School of Mechanical, Aerospace & Systems Engineering, ME 3227, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Bibliografia
- Beynon, J.H., Sellars, C.M., 1992, Modelling microstructure and its effects during multipass hot rolling, ISIJ Int., 32, 359-367.
- Fields, D.S., Backofen, W.A., 1957, Determination of strain hardening characteristics by torsion testing, Proc. Amer. Soc. Test. And Mater., 57, 1259-1272.
- Głowacki, M., Kedzierski, Z., Kusiak, H., Madej, W., Pietrzyk, M., 1992, Simulation of metal flow, heat transfer and structure evolution during hot rolling in square-oval-square series, J. Mat. Proc. Techn., 34, 509-516.
- Hodgson, P.D., Gloss, R.E., Dunlop, G.L., 1991, Microstructure evolution during rod and bar rolling, Proc. Mech. Work. Steel Process., ISS-AIME, 527-538.
- Hodgson, P.D., Gibbs, R.K., 1992, A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ Int., 32, 1329-1338.
- Hodgson, P.D., Zahiri, S.H., Whale, J.J, 2004, The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel, ISIJ Int., 44, 1224-1229.
- Hong, C.P., Park, J.J., 2003, Design of pass schedule for austenite grain refinement in plate rolling of a plain carbon steel, J. Mat. Proc. Techn., 143-144, 758-763.
- Kim, S.Y., Im, Y.T., 2000, Three-dimensional finite element simulation of shape rolling of bars, Int. J. Form. Process., 3, 253-278.
- Kumar, A., McCulloch, C., Hawbolt, E.B., Samarasekera, LV., 1991, Modelling thermal and microstructural evolution on runout table of hot strip mill, Mater. Sci. Technol., 7, 360-368.
- Kwak, D.Y., Cheon, J.S., Im, Y.T., 2002a, Remeshing for metal forming simulations: part l, two-dimensional quadrilateral remeshing, Int. J. Numer. Meth. Eng., 53, 2463-2500.
- Kwak, D.Y., Cheon, J.S., Im, Y.T., 2002b, Remeshing for metal forming simulations: part 2, three-dimensional hexahedral mesh generation, Int. J. Numer. Meth. Eng., 53, 2501-2528.
- Kwon, H.C., Lee, Y., Kim, S.Y., Woo, J.S., Im, Y.T., 2003a, Numerical prediction of austenite grain size in round-oval-round bar rolling, ISIJ Int., 43, 676-683.
- Kwon, H.C., Lee, Y., Im, Y.T., 2003b, Experimental and numerical prediction of austenite grain size distribution in round-oval shape rolling, ISIJ Int., 43, 1967-1975.
- Kwon, H.C., Im, Y.T., 2005, Process design for refinement and homogenization of microstructure in bar rolling, J. Mat. Proc. Techn., 167,273-282.
- Kwon, O., 1992, A technology for the prediction and control of microstructural changes and mechanical properties in steel, ISIJ Int., 32, 350-358.
- Laasraoui, A., Jonas, J. J., 1991, Prediction of temperature distribution, flow stress and microstructure during the multipass hot rolling of plate and strip, ISIJ Int., 31, 95-105.
- Lee, D.L., Yue, S., Choo, W.Y., 2001, A prediction model of recrystallization behavior for AISI4135 steel, J. Kor. Inst. Met. Mater., 39, 655-659.
- Lee, H.W., Kwon, H.C., Im, Y.T., Hodgson, P.D., Zahiri, S.H., 2005, Local austenite grain size distribution in hot bar rolling of AISI 4135 steel, ISIJ Int., 45, 706-712.
- Liu, J., Yanagimoto, J., 2002, Three-dimensional numerical analysis of microstructural evolution in and after bar and shape rolling process, ISIJ Int., 42, 868-875.
- Maccagno, T.M., Jonas, J.J., Hodgson, P.D., 1996, Spreadsheet modeling of grain size evolution during rod rolling, ISIJ Int., 36, 720-728.
- Poliak, E. L, Jonas, J.J., 2003, Initiation of dynamic recrystallization in constant strain rate hot deformation, ISIJ Int., 43,684-691.
- Roucoules, C., Hodgson, P.D., Yue, S., Jonas, J.J., 1994, Softening and microstructural change following the dynamic recrystallization of austenite, Metall. Mater. Trans. A, 25A, 389-400.
- Saito, Y., Enami, T., Tanaka, T., 1985, Mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill, Trans. Iron Steel Inst. Japan, 25, 1146-1155.
- Saito, Y., Shiga, C., 1992, Computer simulation of microstructural evolution in thermomechanical processing of steel plates, ISIJ Int., 32, 414-422.
- Sellars, C.M., Whitemann, J.A., 1979, Recrystallization and grain growth in hot rolling, Met. Sci., 13, 187-194.
- Suehiro, M., Sato, K., Tsukano, Y., Yada, H., Senuma, T., Matsumura, Y., 1987, Computer modeling of microstructural change and strength of Iow carbon steel in hot strip rolling, Trans. Iron Steel Inst. Japan, 27, 439-445.
- Watanabe, Y., Shimomura, S., Funato, K., Nishioka, K., Yoshie, A., Fujioka, M., 1992, Integrated model for microstructural evolution and properties of steel plates manufactured in production line, ISIJ Int., 32, 405-413.
- Yanagimoto, J., Karhausen, K., Brand, A.J., Kopp, R., 1998, Incremental formulation for the prediction of flow stress and microstructural change in hot forming, Trans. ASME, J. Manuf. Sci. Eng., 120, 316-322.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0017-0015