PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A SuFET based sensors for nano-microscope

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A superconducting field-effect transistor (SuFET) based transducer (sensor) with carbon nanotubes (CNT) or pickup coil kind of input circuit for the nerve and neuron impulses, DNA recombination signals, flows of biochemical molecules, micro- and nanoscopy, and biosusceptibility has been designed. A nanoSuFET with a high-temperature superconducting channel is introduced into the nerve fibre or brain tissue for transducing their signals in both directions. Pickup coils are implanted into an organism in order to obtain the natural or artificially excited biosignals from the organs and tissues. The range of picked up signals varies from 0.6 nA to 10 žA with frequencies from 20 to 2000 Hz. The output signal lies in the range of (-5¸5)V, (7¸0)×1017/cm3 molecules and (2¸10) pH. The sensitivity of this micro- or nanoscope can be estimated as HJ= 10-4 (A•m/?Hz) with SNR equal to 104. The sensitivity of an advanced first-order biogradiometer is equal to 3fT/?Hz. The smallest resolvable change in magnetic moment detected by this system in the band 10 Hz is 1 fJ/T.
Twórcy
autor
Bibliografia
  • [1] Weiss H., "Electrical measurement and instrumentations - today and tomorrow",Measurement, 1993, no. 12, pp. 191-210.
  • [2] Lucarelli F., Marrazza G., Turner A. P. F. , "Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors" (Review), Biosensors and Bioelectronics, 2004, no. 19, pp. 515-530.
  • [3] S. Herrera, I've got you under my skin, Red Herring, 2003. Available at: http://www.redherring.com/insider/2003/02/biosensors020503.html.
  • [4] M. Kiguchi, M. Nakayama, K. Fujiwara ,"Accumulation and Depletion Layer Thicknesses in Organic Field Effect Transistors",Jpn. J. Appl. Phys. ,2003, vol. 42, Pt. 2, issue 12A, L1408-L1410.
  • [5] A. Kandori, D. Suzuki, K. Yokosawa et al., "A Superconducting Quantum Interference Device Magnetometer with a Room-Temperature Pickup Coil for Measuring Impedance Magnetocardiograms", Jpn. J. Appl. Phys., 2002, vol. 41, Pt. 1, pp. 596-599.
  • [6] R. Sklyar, "Superconducting Induction Magnetometer", IEEE Sensors J., 2006, no. 6, pp. 357- 364.
  • [7] P. Fromherz, "Electrical Interfacing of Nerve Cells and Semiconductor Chips",CHEMPHYSCHEM, 2002, no. 3, pp. 276-284.
  • [8] R. Sklyar, "A SuFET Based Either Implantable or Non-Invasive (Bio)Transducer of Nerve Impulses",Proceedings of the 13th International Symposium on Measurement and Control in Robotics - ISMCR'03, Madrid,Spain 2003, pp. 121-126.
  • [9] Y. Cui, Q. Wei, H. Park , "Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species",Science , 2001, no. 293, pp.1289-1292.
  • [10] P. Fromherz, Vassanelli S., and Greeff N. G.,NACHIP Project, Reference: IST-2001-38915, 2006. Available at: http://www.biochem.mpg.de/mnphys/europroject/project.html.
  • [11] S. Bargiel, A. Górecka-Drzazga, J. A. Dziubana et al.,"Nanoliter detectors for flow systems",Sens. Act. A ,2004, no. 115, pp. 245-251.
  • [12] R. C. Black, F. C. Wellstood, E. Dantsker, Microwave Microscopy Using a Superconducting Quantum Interference Device", Applied Physics Letters, 1995, no. 66, pp. 99-101.
  • [13] Y. Ono, A Ishiyama, "Development of biomagnetic measurement system for mice with high spatial resolution", Applied Physics Letters , 2004, no. 85, pp. 332-334.
  • [14] M. A. Stroscio, M. Dutta, "Integrated biological-semiconductor devices", Proc. IEEE, 2005, no. 93, pp. 1772-1783.
  • [15] O. Kanoun, H.-R. Tränkler, "Sensor Technology Advances and Future Trends", IEEE Trans. Instrum. Meas., 2004, no. 53, pp. 1497-1501.
  • [16] C. Hanisch, "Nervensache", Bild der Wissenschaft, 1999, no. 2, pp. 70-74.
  • [17] I. Tasaki,Nervous transmission, Charles C. Thomas Publ., Springfield IL USA, 1953.
  • [18] C. Wyart et al., "Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces", Journal of Neuroscience Methods,2002, no. 117, pp. 123-131.
  • [19] K. C. Cheunga, Ph. Renaudb, "BioMEMS for medicine: On-chip cell characterization and implantable microelectrodes",Solid-State Electronics, 2006, no. 50, pp. 551-557.
  • [20] F. Bezanilla, The Nerve Impulse, 2004. Available at:http://pb010.anes.ucla.edu.
  • [21] J. P. Wikswo, J. P. Barach, and J.A. Freeman, "Magnetic Field of a Nerve Impulse: First Measurements", Science, 1980, no. 208, pp. 53-55.
  • [22] S. Reutskiy, E. Rossoni, and B. Tirozzi, "Conduction in bundles of demyelinated nerve fibers: computer simulation",Biol. Cybern., 2003, no. 89, pp. 439-448.
  • [23] J. R. Chan, Ch. Jolicoeur, J. Yamauchi, "The Polarity Pro-tein Par-3 Directly Interacts with p75NTR to Regulate Myelination", Science, 2006, no. 314, pp. 832-836.
  • [24] J. J. Pancrazioa, G. W. Gross, "Measuring synchronization in neuronal networks for biosensor applications",Biosensors and Bioelectronics, 2004, no. 19,pp. 675-683.
  • [25] M. Jenkner, B. Muller, and P. Fromherz, "Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses",Biol. Cybern., 2001, no. 84, pp. 239-249.
  • [26] R. A. Kaul, N. I. Syed, and P. Fromherz, "Neuron-Semiconductor Chip with Chemical Synapse between Identified Neurons", Phys. Rev. Lett., 2004, no. 92,038102 (4 pages).
  • [27] W. Dąbrowski, P. Grybos, and A. M. Litke, "A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays",Biosensors and Bioelectronics, 2004, no.19, pp. 749-761.
  • [28] J. M. Groh, "Converting neural signals from place codes to rate codes", Biol. Cybern., 2001, no. 85, pp. 159-165.
  • [29] A. Jackson, J. Mavoori, E. E. Fetz, "Long-term motor cortex plasticity induced by an electronic neural implant",Nature, 2006, no. 444, pp. 56-60.
  • [30] N. Pourmand, M. Karhanek, H. H. J. Persson et al.,"Direct electrical detection of DNA synthesis", PNAS,2006, no. 103, pp. 6466-6470.
  • [31] R. L. Fagaly, "Superconducting quantum interference device instruments and applications",Rev. Sci.Instrum., 2006, no. 77, 101101 (45 pages).
  • [32] L.E. Fong, J. R. Holzer, K. K. McBride et al., "High-Resolution Room-Temperature Sample Scanning Superconducting Quantum Interference Device Microscope Configurable for Geological and Biomagnetic Applications",Rev. Sci. Instrum., 2005, no. 76, 053703-(1-9).
  • [33] N. Sinha, J. T.-W. Yeow, "Carbon Nanotubes for Biomedical Applications", IEEE Trans. Nanobiosc., 2005, no. 4,pp. 180-195.
  • [34] D. S. Hopkins, D. Pekker, P. M. Goldbart, "Quantum Interference Device Made by DNA Templating of Superconducting Nanowires", Science , 2005, no. 308,pp. 1762-1765.
  • [35] E. Vogel, "Technology and metrology of new electronic materials and devices",Nature Nanotechnology , 2007, no. 2, pp. 25-32.
  • [36] J. F. Jiang, Q. Y. Cai, H. M. Jiang, "High-performance complementary metal-oxide-superconductor field effect transistor (CMOSuFET) current-mode operational amplifier", Supercond. Sci. Technol., 1996, no. 9, pp. A66-A70.
  • [37] Sh. Suzuki, H. Tobisaka, and Sh. Oda, Electric properties of coplanar high-Tc superconducting field-effect devices,Jpn. J. Appl. Phys., 1998, no. 37, Pt. 1, pp. 492-495.
  • [38] B. Yu, M. Meyyappan, "Nanotechnology: role in emerging nanoelectronics",Solid-State Electronics , 2006, no. 50, pp. 536-544.
  • [39] J. H. Schön, Ch. Kloc, and B. Batlogg, "High-temperature superconductivity in lattice-expanded C60", Science, 2001, no. 293, pp. 2432-2434.
  • [40] J. H. Schön, H. Meng, and Z. Bao, "Field-effect modulation of the conductance of single molecules", Science,2001, no. 294, pp. 2138-2141.
  • [41] K. Nakamura, M. Ichikawa, R. Fushiki et al., "Organic field-effect transistor of (thiophene/phenylene) co-oligomer single crystals with bottom-contact configuration", Jpn. J. Appl. Phys., 2004, no. 43, pp. L100-L102.
  • [42] T. Jung, B. Yoo, L. Wang et al., "Nanoscale n-channel and ambipolar organic field-effect transistors",Appl.Phys. Lett., 2006, no. 88, 183102 (3 pages).
  • [43] J. A. Garrido, C. E. Nebel, and R. Todt, "Fabrication of in-plane gate transistors on hydrogenated diamond surfaces", Appl. Phys. Lett., 2003, no. 82, pp. 988-1000.
  • [44] P. Avouris, J. Appenzeller, R. Martel et al., "Carbon nanotube electronics",Proc. of the IEEE, 2003, no. 1772-1784.
  • [45] F. Nihey, H. Hongo, Y. Ochiai et al., "Carbon-nanotube field-effect transistors with very high intrinsic transconductance", Jpn. J. Appl. Phys., 2003, no. 42, Pt. 2,L1288-L1291.
  • [46] Z. Zhong, D. Warmg, and Y. Cui, "Nanowire crossbar arrays as address decoders for integrated nanosystems",Science , 2003, no. 302, pp. 1377-1379.
  • [47] K. Keren, R. Berman, E. Buchstab , "DNA-templated carbon nanotube field-effect transistor", Science, 2003,no. 302, pp. 1380-1382.
  • [48] G. Stix, "Nano Patterning", Scientific American, February 2004.
  • [49] S. Rosenblatt, Y. Yaish, J. Park, "High performance electrolyte gated carbon nanotube transistors", Nano Lett., 2002, no. 2, pp. 869-872.
  • [50] O. V. Lounasmaa, J. Knuutila, R. Salmelin, SQUID Technology and Brain Research,Physica B, 1994, no. 197, pp. 54-63.
  • [51] E. R. Flynn, "Factors Which Affect Spatial Resolving Power in Large Array Biomagnetic Sensors", Rev. Sci.Instrum., 1994, no. 65, pp. 922-935.
  • [52] M. Bick, K. E. Leslie, R. A. Binks, "Axial high-temperature superconducting gradiometer with a flexible flux transformer",Applied Physics Letters, 2004, no. 84, pp. 5347-5349.
  • [53] M. Voelker, P. Fromherz, "Nyquist Noise of Cell Adhesion Detected in a Neuron-Silicon Transistor",Physical Review Letters, 2006, no. 96, 228102 (4 pages).
  • [54] F. Patolsky, B. P. Timko, G. Yu , "Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays", Science, 2006, no. 313, pp. 1100-1104.
  • [55] K. T. Ng , "Noise and sensitivity analysis for miniature e-field probes", IEEE Trans. Instrum. Meas., 1989, no. 30, pp. 27-31.
  • [56] H. Itozaki , "Multi-channel high Tc SQUID", IEICE Trans. on Electron., 2160 E77-C (1994), 1185-1190. (Invited paper)
  • [57] O. V. Lounasmaa et al., SQUID technology and brain research, Physica B 197 (1994) 54-63.
  • [58] A. Sharma and K. R. Rogers, "Biosensors,Meas. Sci.Technol., 1994, no. 5, pp. 461-472.
  • [59] G. L. Romani, S. J. Williamson, and L. Kaufman, "Biomagnetic instrumentation",Rev. Sci. Instrum., 1982, no. 53, pp. 1815-1845.
  • [60] B. P. Helmke, A. R. Minerick, "Designing a nano-interface in a microfluidic chip to probe living cells: Challenges and perspectives",PNAS, 2006, no. 103, pp. 6419-6424.
  • [61] S. Meyburga, M. Goryllb, J. Moersb , "N-channel field-effect transistors with floating gates for extracellular recordings",Biosens. Bioelectr., 2006, no. 21,pp. 1037-1044.
  • [62] Ph. G. Collins, M. S. Arnold, and Ph. Avouris, "Engineering carbon nanotubes and nanotube circuits using electrical breakdown", Science, 2001, no. 292, pp.706-709.
  • [63] B. A. Korgel, "Materials science: self-assembled nanocoils", Science, 27th February 2004, no. 303, pp.1308-9.
  • [64] R. C. Black, F. C. Wellstood, E. Dantsker , "Eddy Current Microscopy Using a 77-K Superconducting Sensor", Appl. Phys. Lett., vol. 64, 1994, issue 1, pp.100-102.
  • [65] K. Nikawa, T. Kobayashi, K. Tanabe , "Recent Topics in High-Tc Superconductive Electronics"(Invited Review Paper),Jpn. J. Appl. Phys. 44 (2005) 7735-7749.
  • [66] D. Read, I. Terry, S. R. Giblin, "Low Temperature Magnetic Susceptometer Based Upon a DC Superconducting Quantum Interference Device",Rev. Sci. Instrum. 77 (2006) 103906 (3 pages).
  • [67] R. C. Black, F. C. Wellstood, E. Dantsker, "Microwave Microscopy Using a Superconducting Quantum Interference Device", Appl. Phys. Lett., vol. 66, 1995, issue 1, pp. 99-101.
  • [68] T. J. Jackson, M. N. Keene, C. E. Gough, "A SQUID Magnetometer for Low Field DC Magnetization and AC Susceptibility Measurements",Meas. Sci. Technol., 1992, no. 3, pp. 988-991.
  • [69] C. H. Barbosa, "Localization of Firearm Projectiles in the Human Body Using a Superconducting Quantum Interference Device Magnetometer: A Theoretical Study",Rev. Sci. Instrum., vol. 75, 2004, issue 6, pp. 2098-2106.
  • [70] M. Gross, D. Altpeter, T. Stieglitz, "Micromachining of flexible neural implants with low- ohmic wire traces using electroplating", Sens. Act. A: Physical, vol. 96, 2002, no. 2, pp. 105-110.
  • [71] K. C. Cheunga, Ph. Renaudb, "BioMEMS for medicine: on-chip cell characterization and implantable microelectrodes",Solid-State Electronics, vol. 50, 2006, issue 4, pp. 551-557.
  • [72] E. Arzt, S. Gorb, and R. Spolenak, "From micro to nano contacts in biological attachment devices, PNAS, 2003, no. 100, pp. 10603-10606.
  • [73] R. G. Ellis-Behnke, Y.-X. Liang, S.-W. You , "Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision",PNAS, 2006, no. 103, pp. 5054-5059.
  • [74] A. V. Liopo, M. P. Stewart, J. Hudson , "Biocompatibility of native and functionalized single-walled carbon nanotubes for neuronal interface",Journal. of Nanoscience and Nanotechnol., vol. 6, 2006, no. 5, pp. 1365-1374.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0014-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.