PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assisted and Protected Effects of Methanol Molecules on Intramolecular Proton Transfer in Formamide Studied with the Density Functional Theory

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Methanol assisted and protected proton transfers from the amide nitrogen to carbonyl oxygen atom inmodel peptide compound formamide have been investigated employing the B3LYP/6-311++G(d,p) level of theory. In the vicinity of formamide (F) and formamidic acid (FA), three different regions are considered to form hydrogen bond with methanol. Methanol molecule only in one of them can assist the proton transfer reaction while in other two sites can protect formamide from tautomerization. Totally, 27 geometries, including nine important transition states, were optimized, and their geometric parameters have also been discussed in detail. The thermodynamic and kinetic parameters, such as tautomeric energies, equilibrium constants, barrier heights, and rate constants have been predicted, respectively. In addition, the factors influencing the thermodynamic and kinetic parameters, such as temperature dependences, and solvent effects have also been explored qualitatively. Computational results show that the lowest proton transfer barrier heights are 83.30 (61.61) kJ/mol without (with) ZPVE correction for the assistance of two methanol molecules, which are also lower than that of the water-assisted process. Nonspecific solvent effects have also been taken into account by using the IPCM model of methanol. The tautomerization energies and the barrier heights are increased for these proton transfer systems because of the bulk solvent, which imply that the tautomerization of F becomes less favorable in the polar medium.
Rocznik
Strony
369--380
Opis fizyczny
Bibliogr. 36 poz., , rys.
Twórcy
autor
autor
autor
autor
  • Department of Chemistry, Qufu Normal University, Shandong, Qufu, 273165, P.R. China
Bibliografia
  • 1. Coll M., Frau J., Vilanova B., Llinas A. and Donoso J., Int. J. Chem., 2, 18 (1999).
  • 2. Madeja F. and Havenith M., J. Chem. Phys., 117, 7162 (2002).
  • 3. Alavi S. and Thomson L.D., J. Chem. Phys., 117, 2599 (2002).
  • 4. Bell R.L. and Truong T.N., J. Chem. Phys., 101, 10442 (1994).
  • 5. Kim K., Lim S., Kim H.J. and Kim Y., J. Phys. Chem. A, 103, 617 (1999).
  • 6. Lim J.-H., Lee E.K. and Kim Y., J. Phys. Chem. A, 102, 2233 (1997).
  • 7. Marchese F.T., Mehrorra P.K. and Beveridge D.L., J. Phys. Chem., 88, 5692 (1984).
  • 8. Puhovski Y.P. and Rode B.M., J. Phys. Chem., 99, 1566 (1995).
  • 9. Adalsteinsson H., Maulitz A.H. and Bruice T.C., J. Am. Chem. Soc., 118, 7689 (1996).
  • 10. Taha N.A. and Ture N.S., J. Phys. Chem. A, 104, 2985 (2000).
  • 11. Wang X.C., Nichols J., Feyereisen M., Gutowski M., Boatz J., Haymet A.D.J. and Simons J., J. Phys.Chem., 95, 10419(1991).
  • 12. Wang X.C., Facelli J.C. and Simons J., Int. J. Quantum Chem., 45, 123 (1993).
  • 13. Ventura O.N., Rama J.B., Turi L. and Dannenberg J. J., J. Phys. Chem., 99, 131 (1995).
  • 14. Pranata J. and Davis G.D., J. Phys. Chem., 99, 14340 (1995).
  • 15. Bell R.L., Taveras D.L., Truong T.N. and Simons J., Int. J. Quantum Chem., 63, 861 (1997).
  • 16. Fu A.P., Li H.L., Du D.M. and Zhou Z.Y., Chem. Phys. Lett., 382, 332 (2003).
  • 17. Kwiatkowski J.S., Bartlett R.L. and Person W.B., J. Am. Chem. Soc., 110, 2353 (1988).
  • 18. Hrouda V., Florian J., Polasek M. and Hobza P., J. Phys. Chem., 98, 4742 (1994).
  • 19. Wang M.W., Wiberg K.B. and Frisch M.J., J. Am. Chem. 10.   Soc., 114, 1645 (1992).
  • 20. Liang W.C. , Li H.R., Hu X.B. and Han S.J., J. Phys. Chem. A, 108, 10219 (2004).
  • 21. Becke A.D., J. Chem. Phys., 98, 5648 (1993).
  • 22. Becke A.D.,J. Chem. Phys., 98, 1372(1993).
  • 23. Lee C., Yang W. and Parr R.G., Phys. Rev. B, 37, 785 (1988).
  • 24. Zhang K. and Chung-Phillips A., J. Chem. Inf. Comput. Sci., 39, 382 (1999).
  • 25. Jensen J.H. and Gordon M.S., J. Am. Chem. Soc., 113, 7917 (1991).
  • 26. Steinflled J.L, Francisco J.S. and Hase W.L., Chemical Kinetic and Dynamics; Prentice Hall: Englewood Cliffs, NJ,(1989).
  • 27. Wigner E.Z., J. Phys. Chem. B, 19, 203 (1932 )
  • 28. Barone V., Cossi M. and Tomasi J., J. Comput. Chem., 19,404 (1998).
  • 29. Barone V. and Cossi M., J. Phys. Chem. A, 102, 1995 (1998).
  • 30. Foresman J.B., Keith T.A., Wiberg K.B., Snoonian J. and Frisch M.J., J. Phys. Chem., 100, 16098 (1996).
  • 31. Li X., Sevilla M.D. and Sanche L., J. Am. Chem. Soc., 125, 8916 (2003).
  • 32. Li X., Sanche L. and Sevilla M.D., J. Phys. Chem. A, 106,11248 (2002).
  • 33. Lee L, Kim C.K., Han I.S., Lee H.W., Kim W.K. and Kim Y.B., J. Phys. Chem. B, 103, 7302 (1999).
  • 34. Kovacevic B. and Maksic Z.B., Org. Lett., 3, 1523 (2001).
  • 35. Frisch M.J. et al., Gaussian98, Revision A.6, Gaussian Inc., Pittsburgh, PA, 1998.
  • 36. Fu A.P., Du D.M. and Zhou Z.Y., Chem. Phys. Lett., 377, 537 (2003).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0011-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.