PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accuracy Comparison of Oscillometric and Electronic Palpation Blood Pressure Measuring Methods Using Intra-Arterial Method as a Reference

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper evaluates blood pressure measurements by the electronic palpation method (EP) and compares their accuracy to that of the oscillometric method (OSC) using average intra-arterial (IA) blood pressure as a reference. All of these three measurements were made simultaneously for each patient. The EP method, based on noninvasively detecting the amplitude of pressure pulsations in the radial artery, differs from the ordinary palpation method by allowing also diastolic pressure to be determined from the pulse delay produced by cuff pressure. In one test group, measurements were conducted on healthy volunteers in sitting and supine position during increasing and decreasing cuff pressure. Another group, comprising older, cardiac patients, was measured only in the supine position during cuff inflation. The results showed that the EP method was approximately as accurate as the OSC method with the healthy subjects and slightly more accurate with the cardiac patient group. The advantage of the EP method is that also the wave shape and velocity of arterial pressure pulses is available for further analysis like the assessment of arterial stiffness. Keywords: noninvasive, blood pressure, cuff, pulse transit time, pulse wave velocity
Rocznik
Tom
Strony
235--260
Opis fizyczny
Bibliogr. 59 poz., rys.
Twórcy
autor
  • University of Oulu, Department of Electrical and Information Engineering, Optoelectronics and Measurement Techniques Laboratory and Infotech Oulu, PO Box 4500, FIN-90014 University of Oulu, Finland
autor
  • University of Oulu, Department of Electrical and Information Engineering, Optoelectronics and Measurement Techniques Laboratory and Infotech Oulu, PO Box 4500, FIN-90014 University of Oulu, Finland
  • University of Oulu, Dept. of Internal Medicine and Biocenter Oulu, 90220 Oulu, Finland
  • Dept. of Anesthesiology, University Hospital of Oulu, 90220 Oulu, Finland
autor
  • University of Oulu, Dept. of Internal Medicine and Biocenter Oulu, 90220 Oulu, Finland
  • University of Oulu, Dept. of Internal Medicine and Biocenter Oulu, 90220 Oulu, Finland
Bibliografia
  • 1. Alexander, H., M. Cohen, L. Steinfeld. Criteria in the choice of an occluding cuff for the indirect measurement of the blood pressure. Med. Biol. Eng. Comput. 15:2, 1977.
  • 2. Asmar, R., A. Benetos, J. Topouchian, P Laurent., B pannier, A-M. Brisac, R. Target, B. I. Levy. Assessment of arterial distensibility by automatic pulse wave velocity measurement. Hypertension. 26(3): 485-490. 1995.
  • 3. Asmar R. Arterial Stiffness and Pulse Wave Velocity, Clinical Applications. Éditions scientifiques et médicales Elsevier SAS. 23, rue Linois, 75724 Paris cedex 15, 1999. 167 p.
  • 4. Association for the Advancement of Medical Instrumentation. American national standard. Electronic or automated sphygmomanometers. ANSI/AAMI SP 10-1987. Arlington, VA: AAMI, 1987:25.
  • 5. Association for the Advancement of Medical Instrumentation. American national standard. Electronic or automated sphygmomanometers. ANSI/AAMI SP 10-1992. Arlington, VA: AAMI, 1993:1-40.
  • 6. Bansal, V., G. Drzewiecki, R. Butterfield. Design of a flexible diaphragm tonometer, Proc. 13th S. Bioeng. Conf. Washington, DC, pp. 148-151, 1994.
  • 7. Blacher J., R. Asmar, S. Djane, G. M. London, M. E. Safar. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 33 (5): 1111-1117. 1999.
  • 8. Chen, C-H., E. Nevo, B. Fetics, P. H. Pak, F. C. P. Yin, L. Maughan, D. A. Kass. Estimation of central aortic pressure by mathematical transformation of radial tonometry pressure; validation of generalized transfer function. Circulation. 95:1827-1836, 1997.
  • 9. Chen, W., T. Kobayashi, S. Ichikawa, Y. Takeuchi, T. Togawa. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. Vol. 38, no. 5, pp. 569-574, 2000.
  • 10. Cristalli, C., M. Ursino, F. Palagi, R. Bedini. FEM simulation and experimental evaluation of the 'squeezing' phenomenon in Riva-Rocci blood pressure measurement. Comput. Cardiology. Proc., pp. 655–658, 1993.
  • 11. Cristalli, C., Neuman MR, Ursino M. Studies on soft tissue pressure distribution in the arm during non-invasive blood pressure measurement. Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual International Conference of the IEEE, Vol. 1, pp. 41-42, 1994.
  • 12. Cristalli, C., P. Mancini, M. Ursino. An experimental and mathematical study of noninvasive blood pressure measurement. Engineering in Medicine and Biology Society, 1992. Vol.14. Proc. of the Annual International Conference of the IEEE, Volume: 1, 29 Oct-1 Nov 1992, pp. 63 –64, 1992.
  • 13. Drzewiecki, G., B. Solanki, J_J. Wang, J. K_L: Li. Noninvasive determination of arterial pressure and volume using tonometry. ELECTRO '96. Professional Program. Proceedings. pp. 61-63, 30 April - 2 May, 1996.
  • 14. Drzewiecki, G., J. J. Pilla. Noninvasive measurement of the human brachial artery pressure-area relation in collapse and in hypertension. Ann. Biomed. Eng. Vol. 26, pp. 967-974, 1998.
  • 15. Drzewiecki, G., J. Melbin, A. Noordengraaf. Arterial tonometry: review and analysis. J. Biomech. 16:141-152, 1983.
  • 16. Drzewiecki, G., Noninvasive assessment of arterial blood pressure and mechanics. In: The Biomedical Engineering Handbook, edited by J.D. Bronzino, Trinity College, Hartford, Connecticut, U.S.A., Chapt. 73, p. 1198, 1995.
  • 17. Drzewiecki, G., R. Hood, A. Apple. Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Ann. Biomed. Eng. Vol. 22, pp. 88-96, 1994.
  • 18. Drzewiecki, G., V. Bansal, E. Karam, R. Hood, A. Apple. Mechanics of the occlusive arm cuff and its application as a volume sensor. IEEE Trans. Biomed. Eng. Vol. 40, pp. 704-708, July 1993.
  • 19. Fetics, B., E. Nevo, C-H. Chen, D. A. Kass. Parametric Model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans. Biomed. Eng. Vol. 46, no. 6, 1999.
  • 20. Ficher, M, K. Kirjavainen, P. Vainikainen, E. Nyfors. Sensor for the measurement of pressure. Proc. of 20th European microwave conference, Budapest, Hungary, pp. 985-989, Sept. 1990.
  • 21. Geddes, L. A. Handbook of Blood Pressure Measurement. Humana Press. 1991.
  • 22. Geddes, L. A., M. Voelz, C. Combs. Characterization of the oscillometric method for measuring indirect blood pressure. Ann. Biomed. Eng. Vol. 10, pp. 271-280, 1983.
  • 23. Geddes, L. A., M. Voelz, S. James, D. Reiner. Pulse wave velocity as a method of obtaining systolic and diastolic blood pressure. Med. Biol. Eng. & Comput. Vol. 19, pp. 671-672, 1981.
  • 24. Geddes, L. A., S. J. Whistler. The error in indirect blood pressure measurement with incorrect size of cuff. Am. Heart. J. 96:4, 1978.
  • 25. Hast, J. T. Self-Mixing Interferometry and Its Applications in Noninvasive Pulse Detection. Oulu, Finland: Dissertation thesis, University of Oulu, Department of Electrical Engineering, 2003, 72 p.
  • 26. Hast, J. T., R. A. Myllylä, H. S. S. Sorvoja, J. Miettinen. Self-mixing interferometry in noninvasive pulse wave velocity measurement. Molecular and Quantum Acoustic, Vol. 22 (2001), pp. 95-106, 2001.
  • 27. Hong, H. Optical Interferometric Measurement of Skin Vibration for the Diagnosis of Cardiovascular Diseases. Michican: UMI Dissertation Services, A Bell & Howell Company, pp. 111-113, 2000.
  • 28. Karamanoglu M., M. F. O’Rourke, A. P. Avolio, R. P. Kelly. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Eur. Heart J. 14:160-167, 1993.
  • 29. Kelly R., C. Hayward, J. Ganis, J. Daley, A. Avolio, M. O’Rourke. Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J. Vasc. Med. Biol. 1:142-149, 1989.
  • 30. Kemmotsu O., M. Ueda, H. Otsuka, T. Yamamura, D. C. Winter, J. S. Eckerle. Arterial tonometry for non-invasive, continuous blood pressure monitoring during anaesthesia. Anaesthesiology. 75:333-340, 1991.
  • 31. Kerola, J., V. Kontra, R. Sepponen. Noninvasive blood pressure data acquisition employing pulse transit time detection. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, 5.3.1: Vessel Dynamics, pp. 1308-1309, Jan. 1997.
  • 32. Kirjavainen, K. Electomechanical film and procedure for manufacturing same. US Patent 4,654,546, 9 p., March 1987.
  • 33. Maguire, M., T. Ward, C. Markham, D. O’Shea, L. Kevin. A comparative study in the use of brachial photoplethysmography and the QRS complex as timing reference in determination of pulse transit time. Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, Vol. 1, 2001, pp. 215-218, 2001.
  • 34. Meigas, K, R. Kattai, J Lass. Continuous blood pressure monitoring using pulse wave delay. Engineering in Medicine and Biology Society, Proc. of the 23rd Annual International Conference of the IEEE, Vol. 4, pp. 3171–3174, 2001.
  • 35. Meigas, K., H. Hinrikus, R. Kattai, J. Lass. Self-mixing in a diode laser as a method for cardiovascular diagnostics. J. Biomed. Optics. 8(1), pp. 152-160, 2003.
  • 36. Nissilä, S. M., M. Sorvisto, H. S. S. Sorvoja, E. I. Vieri-Gashi, R. A. Myllylä. Noninvasive blood pressure measurement based on the electronic palpation method. Proc. of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No 4, pp. 1723-1726, 1998.
  • 37. O’Brien, E., B. Waeber, G. Parati, J Staessen, M. G. Myers. Clinical Review: Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ., Vol. 322, pp. 531-536, 2001.
  • 38. O’Brien, E., J. Petrie, W. Littler, et al. Short report: an outline of the revised British Hypertension Society protocol for the evaluation blood pressure measuring devices. J. Hypertens. Vol. 11, pp. 677-679, 1993.
  • 39. O’Brien, E., J. Petrie, W. Littler, et al. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring device with special reference to ambulatory systems. J. Hypertens. Vol. 8, pp. 607-619, 1990.
  • 40. O’Rourke, M., G. Mancia. Arterial Stiffness. J. Hypertens. Vol. 17, no. 1, pp.1-4, 1999.
  • 41. O’Rourke, M., R. Kelly, A. Avolio. The Arterial Pulse. 200 Chester Field Parkway, Malvern, Pennsylvania 19355-9725, U.S.A., Lea & Febiger, 1992, 239 p.
  • 42. Ruha, A. Detection of Heart Beat in Ambulatory Heart Rate Measurements, Methods and Integrated Circuits. Oulu, Finland: Dissertation thesis, University of Oulu, Department of Electrical Engineering, 1998, pp. 36-42.
  • 43. Ruha, A., J. Miettinen, H. S. S. Sorvoja, S. M. Nissilä. Heart rate measurement based on detection of the radial artery pressure pulse. Proceedings of BIOSIGNAL’96, Brno, Czech Republic, June 25-27 1996, 1:198-200, 1996.
  • 44. Safar M. E., G. M. London, R. Asmar, E. D. Frohlich. Recent advances on large arteries in hypertension. Hypertension, 32: 156-161, 1998.
  • 45. Šantić, A., I. Lacrović. Simultaneous application of multiple oscillometric methods for blood pressure measurement in finger. Proceedings of The First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, Atlanta, GA, USA, p. 231, Oct. 1999.
  • 46. Šantić, A., M. Šaban. Two methods for determination of diastolic pressures in fingers. 1995 IEEE-EMBC and CMBEC, Theme 1, Cardiovascular System, pp. 149-150, July 1997.
  • 47. Sorvoja H., R. Myllylä: Accuracy of the electronic palpation blood pressure measurement method versus the intra-arterial method. Technology and Health Care. International Journal of Health Care, IOS Press, Vol. 12, No. 2, pp. 145-146, 2004.
  • 48. Sorvoja H. S. S., R. A. Myllylä. Accuracy of the electronic palpation method. The 7 thConference of the European Society for Eng. and Medicine (ESEM), p. 196, 2003.
  • 49. Sorvoja H., J. Hast, R. Myllylä, P. Kärjä-Koskenkari, S. Nissilä, M. Sorvisto. Blood pressure measurement method using pulse-transit-time. Mol. Quant. Acoust. Vol. 24, pp. 169-181, 2003.
  • 50. Sorvoja, H. S. S., R. A. Myllylä, S. M. Nissilä, P. Kärjä-Koskenkari, J. K. Koskenkari, M. K. Lilja, Y. A. Kesäniemi. A method to determine diastolic blood pressure based on pressure pulse propagation in the electronic palpation method. Engineering in Medicine and Biology Society, Proc. of the 23rd Annual International Conference of the IEEE, Vol. 1, 2001, pp. 3255-3258, 2001.
  • 51. Sorvoja, H. S. S., R. A. Myllylä, S. M. Nissilä, P. Kärjä-Koskenkari, J. K. Koskenkari, M. K. Lilja, Y. A. Kesäniemi. Systolic blood pressure accuracy enhancement in the electronic palpation method using pulse waveform. Engineering in Medicine and Biology Society, Proc. of the 23rd Annual International Conference of the IEEE, Vol. 1, 2001, pp. 222 –225, 2001.
  • 52. Sorvoja. H. S. S., V-M. Kokko, R. A. Myllylä, J. Miettinen. Use of EMFi as a blood pressure pulse transducer. IEEE Trans. Intr. & Meas. Vol. 54. no. 5, Oct. 2005.
  • 53. Ursino, M., C. Cristalli. A mathematical study of some biomechanical factors affecting the oscillometric blood pressure measurement. IEEE Trans. Biomed. Eng. Vol. 43, no. 8, pp. 761-778, Aug. 1996.
  • 54. Ursino, M., C. Cristalli. Mathematical analysis of the oscillometric technique for indirect blood pressure evaluation. Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, Proceedings of the 16th Annual International Conference of the IEEE, Vol.2, pp. 1286-1287, 1994.
  • 55. van der Hejden-Spek, J. J., J. A. Staessen, R. H. Fagard, A. P. Hoeks, H. A. S. Boudier, L. M van Bortel. Effect of age on brachial artery wall properties differs from the aorta and isgender dependent. Hypertension. 35 (2): 637-642, 2000.
  • 56. van Popele, N. M., D. E. Grobbee, M. L. Bots, R. Asmar, J. Topouchian, R. S. Reneman, A. P. G. Hoeks, D. A. M. van der Kuip, A. Hofman, .J. C. M. Witteman. Association between arterial stiffness and atherosclerosis: the Rotterdam study. Stroke. 32: 454-460. 2001.
  • 57. van Popele, N. M., W. J. W. Bos, N. A. M. de Beer, D. A. M van der Guip, A. Hofman, D. E. Groppee, J C. M. Wittemann. Arterial stiffness as underlying mechanism of disagreement between an oscillometric blood pressure monitor and a sphygmomanometer. Hypertension. 36 (4): 484-488, 2000.
  • 58. Vieri-Gashi, E. I., H. S. S. Sorvoja, R. A. Myllylä, S. M. Nissilä, M. Sorvisto, P. Kärjä-Koskenkari. The effect of the venous pressure to the blood pressure signals measured by 260 Sorvoja H., Myllylä R., Kärjä-Koskenkari P., Koskenkari J., Lilja M., Kesäniemi Y.A. the palpation method. Engineering in Medicine and Biology Society, Proc. of the 23rd Annual International Conference of the IEEE, Vol. 1, 2001, pp. 3259-3261, 2001.
  • 59. Vieri-Gashi, E. I., P. Kärjä-Koskenkari, S. M. Nissilä, M. Sorvisto, H. S. S. Sorvoja, R. A. Myllylä. Blood pressure variation measured by the electronic palpation method and compared to intra-arterial variation. Proceedings of Işik 2000 Workshop on Biomedical Information Engineering, 25-27. June, Istanbul, Turkey, pp. 101-103, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0007-0092
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.