PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intramolecularly Sn-N Coordinated Organotin Hydrides

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, internally Sn-N coordinated organotin hydrides have found an application in organic syntheses, which involve radical chain reactions. Unique reactivity of such hydrides suggests the potential of intramolecular coordination for the control of radical reactions. When the tin hydrides are used in the presence of Lewis acids single- enatiomer outcomes are accessible. This opens a new aspect of free radical chemistry. The intramolecular Sn-N coordination enhances also nucleophilic character of the tin hydrides in reduction of ketones under mild reaction conditions. The occurrence of intramolecular interaction between the nitrogen and tin atoms can be additionally based on the changes in the characteristic values of the 1H, 13C, 15N and117/119Sn NMR parameters and their interrelations.
Rocznik
Strony
1259--1292
Opis fizyczny
Bibliogr. 88 poz., rys.
Twórcy
autor
autor
autor
  • Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
  • 1. Davies A.G., Organotin Chemistry, Wiley-VCH: Weinheim, (2004).
  • 2. Barton D.H.R. and Motherwell B., Pure Appl Chem., 53, 15 (1981).
  • 3. Nanni D. and Curran D.P., Tetrahedron: Asymmetry, 7, 2417 (1996).
  • 4. Blumenstein M., Schwartzkopf K. and Metzger J.O., Angew. Chem., Int. Ed. Engl., 36, 235 (1997).
  • 5. Schwartzkopf K., Saak W., Pohl S. and Metzger J.O., Chem. Ber. Recueil, 130, 1539 (1997).
  • 6. Blumenstein M., Schwartzkopf K., Hayen A. and Metzger J.O., Eur. J. Org. Chem., 117 (1998).
  • 7. Daktemieks D., Dunn K., Perchyonok V.T. and Schiesser C.H., Chem. Commun., 1665 (1999).
  • 8. Daktemieks D. and Schiesser C.H., Aust. J. Chem., 54, 89 (2001).
  • 9. Daktemieks D., Perchyonok V.T. and Schiesser C.H., Tetrahedron: Asymmetry, 14, 3057 (2003).
  • 10. Renaud P. and Gerster M., Angew. Chem., Int. Ed. Engl., 37, 2563 (1998).
  • 11. Sibi M.P. and Porter N.A., Acc. Chem. Res., 32, 163 (1999).
  • 12. Renaud P. and Sibi M.P., Radicals in Organie Synthesis, Wiley-VCH: Weinheim, (2001).
  • 13. Murakata M., Tsutsui H. and Hoshino O., J. Chem. Soc., Chem. Commun., 481 (1995).
  • 14. Urabe H., Yamashita K., Suzuki K., Kobayashi K. and Sato R, J. Org. Chem., 60, 3576 (1995).
  • 15. Gielen M., Topics in Current Chemistry, vol. 104, Organotin Compounds, Springer-Yerlag: Berlin,(1982).
  • 16. This is important not only from economical standpoint but also in view of the concerns about the toxiciry of organotin compounds, see: Occupational Exposure to Organotin Compounds', US Department of Health, Education and Welfare: Washington, (1976).
  • 17. Mokhtar-Jamai H. and Gielen M., Buli. Soc. Chim. Belg., 84, 197 (1975).
  • 18. Lequan R.M. and Leąuan M., Tetrahedron Lett., 22, 1323 (1981).
  • 19. Gielen M. and Yanden Eynde I., J. Organomet. Chem., 198, C55 (1980).
  • 20. Marr I.L., Rosales D. and Wardell J.L., J. Organomet. Chem., 349, 65 (1988).
  • 21. Rosenberg S.D., Debreczeni E. and Weinberg E.L., J. Am. Chem. Soc., 81, 972 (1959).
  • 22. Cmoch P., Urbańczyk-Lipkowska Z., Petrosyan A., Stępień A. and Staliński K., J. Mol. Structure, 733,29 (2005).
  • 23. Jousseaume B. and Villeneuve P.J., J. Chem. Soc., Chem. Commun., 513 (1987).
  • 24. Gielen M. and de Clercą M., J. Organomet. Chem., 47, 351 (1973).
  • 25. Gielen M. and Mokhtar-Jamai H., Bull. Soc. Chim. Belg., 84, 1037 (1975).
  • 26. Gielen M. and Tondeur Y., J. Organomet. Chem., 169, 265 (1979).
  • 27. Schumann H., Wassermann B.C. and Hahn F.E., Organometallics, 11, 2803 (1992).
  • 28. Jastrzebski J.T.B.H., Wehman E., Boersma J., van Koten G., Goubitz K. and Heijdenrijk D.,J. Organomet. Chem., 409, 157 (1991).
  • 29. Daktemieks D., Dunn K., Schiesser C.H. and Tiekink E.R.T., J. Organomet. Chem., 605, 209 (2000).
  • 30. Staliński K., Urbańczyk-Lipkowska Z., Cmoch P., Rupnicki L. and Grachev A., J. Organomet. Chem.,691, 2394 (2006).
  • 31. A system of nomenclature for chiral pentacoordinate species was proposed which leads to unambiguous speciflcation of the configuration at the chiral pentacoordinate tin centers, see: Martin J.C. and Balthazor T.M.,7. Am. Chem. Soc., 99, 152 (1977).
  • 32. Gielen M., de Clercą M., Mayence G., Nasielski J., Topart J. and Vanwuytswinkel H., Red. Trav. Chim. Pays-bas, 88, 1137(1969).
  • 33. Gielen M. and Mokhtar-Jamai H., J. Organomet. Chem., 91, C33 (1975).
  • 34. Nitzsche S. and Wiek M., Angew. Chem., 69, 96 (1957).
  • 35. Hays D.S. and Fu G.C., J. Org. Chem., 61, 4 (1996).
  • 36. Pijselman J. and Pereyre M., J. Organomet. Chem., 63, 139 (1973).
  • 37. Finholt A.F., Bond A.C., Wilzbach K.E. and Schlesinger H.I., J. Am. Chem. Soc., 69, 2692 (1947).
  • 38. Gielen M. and Tondeur Y., J. Organomet. Chem., 169, 265 (1979).
  • 39. Gielen M., Pure Appl. Chem., 52, 657 (1980).
  • 40. Birnbaum E.R. and Javora P.H., J. Organomet. Chem., 9, 379 (1967).
  • 41. Szammer J. andOtvos L., Chem. Ind. (London), 764 (1988).
  • 42. Blanton R.J. and Salley J.M., J. Org. Chem., 56, 490 (1991) and references cited therein.
  • 43. Deleuze H. and Maillard B., J. Organomet. Chem., 490, C14 (1995).
  • 44. Klingler R.J., Bloom I. and Rathke J.W., Organometallics, 4, 1893 (1985).
  • 45. Tamborski C. and Solowski E.J., J. Am. Chem. Soc., 83, 3734 (1961).
  • 46. Neumann W.P. and Pedain J., Tetrahedron Lett., 2461 (1964).
  • 47. Suga S., Manabe T. and Yoshida J.-L, Chem. Commun., 1237 (1999).
  • 48. Daktemieks D., Dunn K., SchiesserC.H. andTiekinkE.R.T., J. Chem. Soc., Dalton Trans., 3693 (2000).
  • 49. The limitingnonbondingdistancebetweentin andnitrogenhasbeen estimatedas 3.08 A, see: DragerM., Z. Anorg. Allg. Chem., 423, 53 (1976).
  • 50. Cunningham D., Higgins T. and McArdle P., J. Chem. Soc., Chem. Commun., 833 (1984).
  • 51. Petrosyan V.S., Próg. Nuci. Magn. Res. Spectr., 11, 115 (1977).
  • 52. Nadvornik M., Holeček J., Handlif K. and Lyčka A., J. Organomet. Chem., 275, 43 (1984).
  • 53. Wrackmeyer B., Ann. Rep. NMR Spect., Ed. G.A. Webb, Academic Press, vol. 16, 73, 1985.
  • 54. Rupnicki L., Urbańczyk-Lipkowska Z., Stępień A., Cmoch P., Pianowski Z. and Staliński K., J. Organomet. Chem., 690, 3690 (2005).
  • 55. Daktemieks D., Dunn K., Henry D.J., Schiesser C.H. and Tiekink E.R.T., Organometallics, 18, 3342 (1999).
  • 56. Staliński K., Cmoch P., Matkowska D., Gola M. and Śnieżek M., in preparation.
  • 57. Jastrzebski J.T.B.H. and van Koten G., Adv. Organometal. Chem., 35, 241 (1993).
  • 58. Jastrzebski J.T.B.H., Grove D.M., Boersma J., Van Koten G. and Ernsting J-M., Magn. Reson. Chem., 29,825(1991).
  • 59. Ružička A., Pejchal V., Holeček J., Lyčka A. and Jacob K., Collect. Czech. Chem. Commun., 63, 977 (1998).
  • 60. Ružička A., Jambor R., Brus J., Cisaŕova I. and Holeček J., Inorg. Chim. Acta, 323, 163 (2001).
  • 61. Wong M.W., Pross A. and Radom L., J. Am. Chem. Soc., 116, 11938 (1994).
  • 62. Valgimigli L., Ingold K.U. and Lusztyk J., J. Org. Chem., 61, 7947 (1996).
  • 63. Easton C.J. and Merrett M.C., J. Am. Chem. Soc., 118, 3035 (1996).
  • 64. Fukui K., Acc. Chem. Res., 4, 57 (1971).
  • 65. Fleming L, Frontier Orbitals and Organie Chemical Reactions, Wiley, London, (1976).
  • 66. Murakata M., Tsutsui H., Takeuchi N. and Hoshino O., Tetrahedron, 55, 10295 (1999).
  • 67. Daktemieks D., Henry D.J. and Schiesser C.H., J. Chem. Soc., Perkin Trans. 2, 1665 (1997).
  • 68. Kang J. and Kim T.H., Bull. Korean Chem. Soc., 24, 1055 (2003).
  • 69. Berge J.M. and Roberts S.M., Synthesis, 471 (1979).
  • 70. Leibner J.E. and Jacobus J., J. Org. Chem., 44, 449 (1979).
  • 71. Barton D.H.R., Motherwell W.B. and Stange A., Synthesis, 743 (1981).
  • 72. Curran D.P. and Chang C.T., J. Org. Chem., 54, 3140 (1989).
  • 73. Crich D. and Sun S., J. Org. Chem., 61, 7200 (1996).
  • 74. Renaud P., Lacóte E. and Quaranta L., Tetrahedron Lett., 39, 2123 (1998).
  • 75. Edelson B.S., Stoltz B.M. and Corey E.J., Tetrahedron Lett., 40, 6729 (1999).
  • 76. Corey EJ. and Suggs J.W., J. Org. Chem., 40, 2554 (1975).
  • 77. Stork G. and Sher P.M., J. Am. Chem. Soc., 108, 303 (1986).
  • 78. Lawrence N J., Drew M.D. and Bushell S.M., J. Chem. Soc., Perkin Trans, 1 3381 (1999).
  • 79. Hays D.S., Scholl M. and Fu G.C., J. Org. Chem., 61, 6751 (1996).
  • 80. Clive D.LJ. and Wang J., J. Org. Chem., 67, 1192 (2002) and references cited therein.
  • 81. Curran D.R, Hadida S., Kim S.-Y. And Luc Z.. J. Am. Chem. Soc, 121, 6607 (1999).
  • 82. Pianowski Z. and Staliński K., Polish J. Chem., 79, 721 (2005) and references cited therein.
  • 83. Leusink A.J., Budding H.A. and Drenth W.,J Organomet. Chem., 13, 163 (1968).
  • 84. Neumann W.R and Heymann E., Liebigs Ann. Chem., 683, 11 (1965).
  • 85. Shibata 1., Suzuku T., Baba A. And Matsuda H., J. Chem. Soc, Chem. Commun., 882 (1988).
  • 86. Shibata I., Yoshida T., Kawakami T., Baba A. And Matsuda H., J. Org. Chem., 57, 4049 (1992).
  • 87. Vedejs E., Duncan S.M. And Haight A.R., J. Org. Chem., 58, 3046 (1993).
  • 88. Komsta Z., Grachev A., Masnyk M., Cmoch P. And Staliński K., in preparation.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0007-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.