PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Actinide ion exchange technology in the back end of the nuclear fuel cycle

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ion exchange is used extensively in nuclear power technology, especially for uranium ore processing, removal of contaminants from power reactor waters and in the back end of the nuclear fuel cycle. In nuclear fuel reprocessing plants, ion exchange is used for the purification of actinide elements for further use, for the solidification of low- and medium-active waste solutions, and for the partitioning of high-level wastes. This paper reviews selected technological uses of ion exchange in these operations for recovery, separation and purification of selected actinides (Pu, U, Np, etc.). Recent research and development on ion exchange technologies for actinides are also summarized.
Czasopismo
Rocznik
Strony
75--80
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Environmental Engineering and Science, Clemson University, 342 Computer Court, Anderson, S.C. 29625-6510, USA
autor
  • Nuclear Chemistry and Chemical Engineering Center, Institute of Research and Innovation, 1201 Takada, Kashiwa-city, 277-0861 Japan, Tel.: 81471/ 448865, Fax: 81471/ 447602
Bibliografia
  • 1. Christensen EL, Gray LW, Navratil JD, Schulz WW (1983) Present status and future direction of plutonium process chemistry. In: Carnall WT, Choppin GR (eds) Plutonium chemistry. Am Chem Soc, Washington, pp 349–368
  • 2. Christensen EL, Maraman WJ (1969) Plutonium processing at the Los Alamos Scientific Laboratory. USAEC-Report, LA-3542, Los Alamos
  • 3. Cleveland JM (1970) The chemistry of plutonium. Gordon & Breach, New York
  • 4. Durham RW, Mills R (1953) The absorption of plutonium by anion resins. AECL-Report, CEl-62, Chalk River
  • 5. El-Sweify F, Ali SA (1980) Chromatographische Am-/CmTrennung in Schwach Sauren Oxidierenden Medien in der Wässrigen und dem Chelatbildenden Austauscher Dowex-A1 in der Stationären Phase. J Radioanal Chem 60:353–363
  • 6. Faris JP, Buchanan RF (1963) Some applications of anion exchange-spectrographic procedures in a nitric acid medium. USAEC-Report, ANL-6811, Argonne
  • 7. Faris JP, Buchanan RF (1964) Anion exchange characteristics of elements in nictric acid medium. Anal Chem 36:1157–1158
  • 8. Gray LW, Radke JH (1982) Plutonium scrap recovery at the Savannah River Plant. In: Navratil JD, Schulz WW (eds) Actinide recovery from waste and low grade sources. Harwood Academic Publ, New York, pp 3–26
  • 9. Hanford plant: explosion of cation exchange column in americium recovery service (1976). Rep. BNWI-1006
  • 10. Hoshikawa T, Kawamura F, Yokoi H et al. (1997) Development of an advanced wet reprocessing process by applying ion-exchange technology. In: Proceeding of GLOBAL’97: Int Conf on Future Nucl Systems. AESJ, Yokohama, Japan, pp 1454–1459
  • 11. Jenkins IL (1979) Ion-exchange in the atomic-energy industry with particular reference to actinide and fission-product separations –review. Hydrometallurgy 5:1–13
  • 12. Jenkins IL (1984) Ion exchange in atomic energy industry with particular reference to actinide and fission product separation. Solvent Extr Ion Exch 2:1–27
  • 13. Jenkins IL, Waiin AG (1959) title of the article?? Rep Prog Appl Chem 51:60–xx
  • 14. Katz JJ, Seaborg GT, Morss LR (eds) (1986) The chemistry of the actinide elements, vol. 1, 1st, 2nd ed. Chapman and Hall, New York, pp 553–555
  • 15. Kazanjian AR, Killion ME (1982) Radiation effects on amberlite IRA-938 and bio-rad MP-50 ion exchange resins. Gamma radiation. RFP-3167. Rockwell International Corp., Golden, CO
  • 16. Kazanjian AR, Stevens JR (1983) Radiation effects on Dowex MSC1, Amberlite 252, and Duolite C-264 ion exchange resins. Gamma rays. RFP-3541, Rockwell International Corp., Golden, CO
  • 17. Lehto J (1993) Ion exchange in the nuclear power industry. In: Dyer A, Hudson MJ, Williams PA (eds) Ion exchange processes: advances and applications. Proc of ION-EX’93, Special publication, no. 122. Royal Society of Chemistry, Wrexham, pp 39–53
  • 18. Long JT (1967) Engineering for nuclear fuel reprocessing. Gordon & Breach Sci Publ, New York
  • 19. Marsh SF (1989) Reillex™ HPQ: a new, macroporous polyvinylpyridine resin for separating plutonium using nitrate anion exchange. Solvent Extr Ion Exch 7;5:889–908
  • 20. Marsh SF (1991) The effects of in situ alpha-particle irradiations on six strong-base anion exchange resins. USDOE-Report, LA12055, Los Alamos
  • 21. Marsh SF (1992) The effects of external gamma radiation and in situ alpha particles on five strong-base anion exchange resins. In: Proceeding of IEX’92: Ion Exchange Advances. SCI, London, pp 358–365
  • 22. Miles FW (1968) Ion-exchange resin system failures in processing actinides. Nucl Safety 9:394–406
  • 23. Navratil JD, Martella LL (1979) Comparison of anion exchange resins for recovering plutonium from nitric acid waste. Nucl Technol 46;1:105–109
  • 24. Navratil JD, Schulz WW (eds) (1980) Actinide separations. Am Chem Soc, Washington
  • 25. Navratil JD, Schulz WW (eds) (1981) Transplutonium elements production and recovery. Am Chem Soc, Washington
  • 26. Nogami M, Aida M, Fujii Y et al. (1996) Ion-exchange selectivity of tertiary pyridine-type anion-exchange resin for treatment of spent nuclear fuels. Nucl Technol 115;23:293–297
  • 27. Nogami M, Fujii Y, Sugo T (1996) Radiation resistance of pyridine type anion exchange resins for spent fuel treatment. J Radioanal Nucl Chem 203;1:109–117
  • 28. Roberts JT (1958) Developments in continuous ion exchange equipment for AEC applications. USAEC-Report, ORNL-2504, Oak Ridge
  • 29. Ryan JL, Wheelwright EJ (1959) Recovery and purification of plutonium by anion exchange. Ind Eng Chem 51:60–65
  • 30. Schulz WW (1976) The chemistry of americium. U S ERDA, Washington, DC
  • 31. Schulz WW, Benedict GE (1972) Neptunium-237 production and recovery. U S Atomic Energy Commission Report
  • 32. Schulz WW, Navratil JD (eds) (1984) Science and technology of tributyl phosphate. Vol. 1: Synthesis, properties, reactions and analysis. CRC Press, Boca Raton, Florida
  • 33. Schulz WW, Wheelwright EJ, Godbee H, Mallory CW, Burney GA, Wallace RM (1983) Ion exchange and adsorption in nuclear chemical engineering. DP-MS-83–109, Dupont Co, Savannah River Lab
  • 34. Silva RA, Navratil JD (1983) Comparison of cation exchange resins for recovering americium and plutonium from chloride salts. Solvent Extr Ion Exch 1;4:827–834
  • 35. Stevenson CE, Mason EA, Gresky AT (eds) (1970) Progress in nuclear energy. Series III, Process chemistry, vol. 4. Pergamon Press, New York
  • 36. Stoller SM, Richards RB (eds) (1961) Reactor handbook. Vol. 2: Fuel reprocessing, 2nd ed. Interscience, New York
  • 37. Van Loon LR, Hummel W (1999) Radiolytic and chemical degradation of strong acidic ion-exchange resins: study of ligands formed. Nucl Technol 128;3:359–401
  • 38. Wei YZ, Arai T, Kumagai M, Takashima Y (2001) An advanced ion exchange process for reprocessing spent nuclear fuels – electrolytic reduction of U(VI) to U(IV) and separation of U(IV) from FPs. In: Proc of GLOBAL’2001. Int Conf on Back-End of the Fuel Cycle. Paris, France (in press)
  • 39. Wei YZ, Arai T, Kumagai M, Takashima Y, Bruggeman A, Gyseman M (2000) Development of an advanced ion exchange process for the reprocessing of spent nuclear fuels. In: Proc of IEX’2000: Ion Exchange at the Millenium. SCI, London, pp 116–123
  • 40. Wei YZ, Kumagai M, Takashima Y et al. (1996) A study on the application of a newly developed ion-exchange process to spentnuclear-fuel reprocessing. In: Proc of IEX’96: Ion Exchange Developments and Applications. SCI, London, pp 174–181
  • 41. Wei YZ, Kumagai M, Takashima Y et al. (1998) The application of an advanced ion exchange process to reprocessing spent nuclear fuels. 1. Separation behavior of fission products from uranium. J Nucl Sci Technol 35;5:357–364
  • 42. Wei YZ, Kumagai M, Takashima Y, Bruggeman A, Gyseman M (1999) A rapid elution method of tetravalent plutonium from anion exchanger. J Nucl Sci Technol 36;3:304–306
  • 43. Wymer RG, Vondra BL (eds) (1981) Light water reactor nuclear fuel cycle. CRC Press, Boca Raton, Florida
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0006-0090
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.