PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

DFT/PM3 study of the enoyl-CoA hydratase catalyzed reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference “2001 an Isotope Odyssey: New Application for a New Millenium", June 24-29, 2001, Zakopane, Poland
Języki publikacji
EN
Abstrakty
EN
The enoyl-CoA hydratase catalyzed hydration of alfa,beta-unsaturated thiolesters has been modeled by using the crystal structure of 4-(N,N-dimethylamino)cinnamoyl-CoA bound at the active site. The quantum chemical calculation used the ONIOM mixed level procedure to permit the substrate thiolester and water molecule to be modeled using B3LYP/6-31G(d) level of theory and the active site residues modeled at a semiempirical level using the PM3 Hamiltonian. The results permitted the identification of a stable thiolester enolate intermediate, supporting a stepwise reaction mechanism. The calculation also suggests that the same proton removed from the nucleophilic water molecule is transferred to C alfa in the subsequent protonation of the enolate intermediate. This observation reconciles the stepwise mechanism with the previously reported double isotope effect study [3].
Czasopismo
Rocznik
Strony
33--36
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4935, USA, Tel.: 216 368 2599, Fax: 216 368 3419
autor
  • Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106-4935, USA, Tel.: 216 368 2599, Fax: 216 368 3419
autor
  • Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
Bibliografia
  • 1. Ayala PY, Schlegel HB (1997) A combined method for determinating reaction paths, minima and transition state geometries. J Chem Phys 107:375–382
  • 2. Bahnson BJ, Anderson VE (1989) Isotope effects on the crotonase reaction. Biochemistry 28:4173–4181
  • 3. Bahnson BJ, Anderson VE (1991) Crotonase-catalyzed β-elimination is concerted: a double isotope effect study. Biochemistry 30:5894–5906
  • 4. Dapprich S, Komaromi I, Byun KS, Morokuma K, Frisch MJ (1999) A new ONIOM implementation in Gaussian 98. Pt. I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Theochem-Journal of Molecular Structure 462:1–21
  • 5. D’Ordine RL (1995) Enoyl-CoA hydratase: UV-vis, 1H and 13C NMR studies of substrate-active site interactions and their mechanistic implications. Ph.D. thesis. Brown University
  • 6. D’Ordine RL, Bahnson BJ, Tonge PJ, Anderson VE (1994) Enoyl-coezyme A hydratase-catalyzed exchange of the α-protons of coenzyme A thiol esters: a model for an enolized intermediate in the enzyme-catalyzed elimination? Biochemistry 33:14733–14742
  • 7. Engel CK, Mathieu M, Zeelen JP, Hiltunen JK, Wierenga RK (1996) Crystal structure of enoyl-coenzyme A (CoA) hydratase at 2.5 angstroms resolution: a spiral fold defines the CoA-binding pocket. EMBO J 15:5135–5145
  • 8. Frish MJ, Trucks GW, Schlegel HB et al. (1998) In: Gaussian 88. Ed. A.3. Gaussian Inc., Pittsburgh, PA
  • 9. Gerlt JA, Gassman PG (1992) Understanding enzyme-catalyzed proton abstration from carbon acids: Details of stepwise mechanisms for beta-elimination reactions. J Am Chem Soc 114:5928–5934
  • 10. Hermes JD, Roeske CA, O’Leary MH, Cleland WW (1982) Use of multiple isotope effects to determine enzyme mechanisms and intrinsic isotope effects. Malic enzyme and glucose-6-phosphate dehydrogenase. Biochemistry 21:5106–5114
  • 11. Holden HM, Benning MM, Haller T, Gerlt JA (2001) The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme and thioesters. Acc Chem Res 34:145–157
  • 12. Modis Y, Filppula SA, Novikov DK, Norledge B, Hiltunen JK, Wierenga RK (1998) The crystal structure of dienoyl-CoA isomerase at 1.5 angstrom resolution reveals the improtance of aspartate and glutamate sidechains for catalysis. Structure 6:957–970
  • 13. Müller-Newen G, Janssen U, Stoffel W (1995) Enoyl-CoA hydratase and isomerase form a superfamily with a common active-site glutamase residue. Eur J Biochem 228:68–73
  • 14. Wu WJ, Anderson VE, Raleigh DP, Tonge PJ (1997) Structure of hexadienoyl-CoA bound to enoyl-CoA hydratase determined by tranferred nuclear Overhauser effect measurements: mechanisticpredictions based on the X-ray structure of 4-chlorobenzoyl-CoA dehalogenase. Biochemistry 36:2211–2220
  • 15. Yang G, Liu RQ, Taylor KL, Xiang H, Price J, Dunaway-Mariano D (1996) Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis. Biochemistry 35:10879–10885
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0006-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.