PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanistic variation in the glycosyltransfer of N-acetylneuraminic acid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference “2001 an Isotope Odyssey: New Application for a New Millenium", June 24-29, 2001, Zakopane, Poland
Języki publikacji
EN
Abstrakty
EN
N-acetylneuraminic acid is an acidic nine-carbon amino ketose typically found at the non-reducing terminus of glycoproteins and glycolipids. The presence of a carboxylate group adjacent to the anomeric center suggest that this sugar could have transition states with highly stabilized oxocarbenium ion character during transfer reactions at the anomeric carbon. Kinetic isotope effect (KIE) experiments were used to probe the transition state for solvolysis of UMP-NeuAc, sialyltransferase-catalyzed transfer of UMP-NeuAc to N-acetyl-lactosamine, trans-sialidase catalyzed transfer of alfa(2--3) Neu-Lac or alfa(2--3) Neu-Gal, and acid catalyzed hydrolysis of alfa(2--3) Neu-Lac. The two key positions of isotope substitution in the N-acetyl neuraminic acid residue were the C3’ position, di-substituted with deuterium, and the C2’ position, substituted with either carbon-13 or carbon-14. The solvolysis reaction had a beta–2H KIE of 1.28 and a primary 14C KIE of 1.03. The sialyltransferase-catalyzed reaction had a b-2H KIE of 1.22 and a 14C KIE of 1.03. Trans-sialidase had a b–2H KIE of 1.05 and a primary 13C KIE of 1.03, equivalent to a 14C KIE of 1.06. Solvolysis of the trans-sialidase substrate gave a beta-2H KIE of 1.06, and a primary 13C KIE of 1.015. The results indicate a very late transition state for solvolysis of CMP-NeuAc, without nucleophilic participation. The sialyltransferase transition state is similar, but with less charge development. Trans-sialidase has a transition state with diminished charge development and considerable nucleophilic character, which leads to a covalent intermediate. The glycosyltransfer of N-acetylneuraminic acid glycosides is not limited to the classical dissociative mechanism.
Czasopismo
Rocznik
Strony
25--28
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Department of Chemistry, University of Florida, Gainesville Fl 32611-7200, USA, Tel.: 352 392 9859, Fax: 352 846 2095
autor
  • Department of Chemistry, University of Florida, Gainesville Fl 32611-7200, USA, Tel.: 352 392 9859, Fax: 352 846 2095
autor
  • Department of Chemistry, University of Florida, Gainesville Fl 32611-7200, USA, Tel.: 352 392 9859, Fax: 352 846 2095
Bibliografia
  • 1. Ashwell M, Guo X, Sinnott ML (1992) Pathways for the hydrolysis of glycosides of N-acetylneuraminic acid. J Am Chem Soc 114:10158–10166
  • 2. Bron J, Stothers JB (1968) Carbon-13 kinetic isotope effects 4. Effect of temperature on k12/k13 for benzyl halides in bimolecularrea ctions. Can J Chem 46:1825–1829
  • 3. Bruner M, Horenstein BA (1998) Isotope trapping and kinetic isotope effect studies of rat liver α(2→6)-sialyltransferase. Biochemistry 37:289–297
  • 4. Bruner M, Horenstein BA (2000) Use of an altered sugarnucleotide to unmask the transition state for α(2→6) sialyltransferase. Biochemistry 39:2261–2268
  • 5. Crennell SJ, Garman EF, Philippon C, Vasella A, Laver WG, Vimr ER, Taylor GL (1996) The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution. J Mol Biol 259:264–280
  • 6. Dalquist FW, Rand-Meir T, Raftery MA (1969) Application of secondary alpha-deuterium kinetic isotope effects to studies of enzyme catalysis. Glycoside hydrolysis by lysozyme and beta-glucosidase. Biochemistry 8:4214–4221
  • 7. Firth-Clark S, Rodriquez CF, Williams IH (1997) Hydroxyoxiranone: an ab initio MO investigation of the structure and stability of a model for a possible alpha-lactone intermediate in hydrolysis of sialyl glycosides. J Chem Soc Perkin 2:1943–1948
  • 8. Harduin-Lepers A, Recchi M-A, Delannoy P (1995) 1994, the year of sialyltransferases. Glycobiology 5:741–758
  • 9. Horenstein BA (1997) Quantum mechanical analysis of an alpha--carboxylate-substituted oxocarbenium ion. Isotope effects for formation of the sialyl cation and the origin of an unusually large secondary C-14 isotope effect. J Am Chem Soc 119:1101–1107
  • 10. Horenstein BA, Bruner M (1996) Acid-catalyzed solvolysis of CMP-N-acetyl neuraminate: evidence for a sialyl cation with a finite lifetime. J Am Chem Soc 118:10371–10379
  • 11. Horenstein BA, Bruner M (1998) The N-acetyl neuraminyl oxocarbenium ion is an intermediate in the presence of anionic nucleophiles. J Am Chem Soc 120:1357–1362
  • 12. Schauer R, Kelm S, Reuter G, Roggentin P, Shaw L (1995) Biochemistry and role of the sialic acids. In: Rosenberg A (ed) Biology of the sialic acids. Plenum Press, New York, pp 7–67
  • 13. Schenkman S, Eichinger D, Pereira MEA, Nussenzweig V (1994) Structural and functional properties of Trypanosoma trans-sialidase. Ann Rev Microbiol 48:499–523
  • 14. Schramm VL (1998) Enzymatic transition states and transition state analog design. Ann Rev Biochem 67:693–720
  • 15. Simon H, Palm D (1966) Isotope effects in organic chemistry and biochemistry. Angew Chem Int Ed Eng 5:920–933
  • 16. Yang J (2000) Transition state and mechanistic study of Trypanosoma cruzi trans-sialidase. Doctoral dissertation.University of Florida
  • 17. Yang J, Schenkman S, Horenstein BA (2000) Primary C-13 and beta-secondary H-2 KIEs for trans-sialidase. A snapshot of nucleophilic participation during catalysis. Biochemistry 39:5902–5910
  • 18. Zechel DL, Withers SG (2000) Glycosidase mechanisms: anatomy of a finely tuned catalyst. Acc Chem Res 33:11–18
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0006-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.