PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiostrontium uptake by lichen Hypogymnia physodes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference Mechanism of Radionuclides and Heavy Metals Bioaccumulation and their Relevance for Biomonitoring, Warsaw, Poland, October 7-8, 2005
Języki publikacji
EN
Abstrakty
EN
Radiostrontium 85Sr sorption experiments were carried out at 4°C and 20°C using natural samples of the epiphytic foliose lichen Hypogymnia physodes. Thalli were incubated in water solutions containing 10 5 to 10 1 mol.l 1 SrCl2 for up to 24 h at the initial pH 5.5. Sorption equilibrium at 4°C and 20°C was observed within 1 hour and did not change within the next 24 hours. Sorption process can be described well by Freundlich adsorption isotherm in both linearised and non-linearised form, not by Langmuir adsorption isotherm. Inactivation of lichen biomass by formaldehyde or temperature pretreatment did not cause loss of biosorption activity. 85Sr biosorption was strongly pH dependent increased from negligible values at pH 2 up to nearly 100% uptake at pH 5.5. Bivalent cations Me2+ act as competitors for 85Sr biosorption with the competition effect increasing in the order Co < Mg < Ca < Cd < Ni < Ba < Zn < Cu for Me2+ concentration 0.01 mol.l 1. A number of displacing agents have been tested for their ability to release extracellular bound 85Sr2+ ions from Hypogymnia physodes. Displacing efficiency increases in the order: water <<< EDTA (acid) < NaHCO3 < Na2EDTA < oxalic acid < BaCl2 < MgCl2 < CaCl2 < SrCl2. Efficiency of strontium biosorption by different lichen taxa will reveal their role in fixation of radiostrontium contamination in biosphere.
Słowa kluczowe
Czasopismo
Rocznik
Strony
39--44
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
autor
autor
autor
autor
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel.: +421335565384, Fax: +421335565185, pipiskam@ucm.sk
Bibliografia
  • 1. Adamo P, Arienzo M, Pugliese M, Roca V, Violante P (2004) Accumulation history of radionuclides in the lichen Stereocaulon vesuvianum from Mt. Vesuvius (South Italy). Environ Pollut 127:455–461
  • 2. Aksu Z, Acikel Ü, Kutsal T (1997) Application of multicomponent adsorption isotherm to simultaneous biosorption of iron(III) and chromium(VI) on C. vulgaris. Chem Tech Biotechnol 70:368–378
  • 3. Avery SA, Tobin JM (1992) Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58:3883–3889
  • 4. Beaugelin-Seiller K, Baudin JP, Brottet D (1994) Use of aquatic mosses for monitoring artificial radionuclides downstream of the nuclear power plant of Bugey (River Rhone, France). J Environ Radioact 24:217–233
  • 5. Brown DH (1991) Lichen mineral studies – currently clarified or confused? Symbiosis 11:207–223
  • 6. Connolly JH, Shortle WC, Jellison J (1999) Translocation and incorporation of strontium carbonate derived strontium into calcium oxalate crystals by the wood decay fungus Resinicium bicolor. Can J Bot/Rev Can Bot 77:179–187
  • 7. Conti ME, Cecchetti G (2001) Biological monitoring: lichens us bioindicators of air pollution assessment – a review. Environ Pollut 114:471–492
  • 8. Dean JA (1969) Chemical separation methods. Van Nostrand Reinhold Company, New York 9. Fugueira R, Ribeiro T (2005) Transplants of aquatic mosses as biomonitors of metals released by mine effluents. Environ Pollut 136:293–301
  • 10. Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60
  • 11. Garty J (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Crit Rev Plant Sci 20:309–371
  • 12. Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Mineralogist 83:1494–1502
  • 13. Kasama T, Murakami T, Ohnuki T (2003) Accumulation mechanisms of uranium, copper and iron by lichen Trapelia involuta. In: Kobayashi I, Ozawa H (eds) Proc of the 8th Int Symp on Biomineralization, Kanagawa, Japan. Tokai Univ. Press, Kanagawa, pp 298–301
  • 14. Kirchner G, Daillant O (2002) The potential of lichens as long-term biomonitors of natural and artificial radionuclides. Environ Pollut 120:145–150
  • 15. Koèiová M, Pipíška M, Horník M, Augustín J (2005) Bioaccumulation of radiocesium by lichen Hypogymnia physodes. Biologia (Bratislava) 60 (in press)
  • 16. Ledin M, Pedersen K, Allard B (1997) Effects of pH and ionic strength on the adsorption of Cs, Sr, Eu, Zn, Cd and Hg by Pseudomonas putida. Water, Air Soil Pollut 93:367–381
  • 17. Ministry of Agriculture of SR (1994) Limit values of risk elements content in soil. Resolution of the Ministry of Agriculture of SR, No. 531/1994–540
  • 18. Negri MC, Hinchman RR (2000) The use of plants for the treatment of radionuclides. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals. Using plants to clean up the environment. Wiley Interscience, New York, pp 107–132
  • 19. Nieboer E, Puckett KJ, Grace B (1976) The uptake of nickel by Umbilicaria muhlenbergii. A physiological process. Can J Bot 54:724–733
  • 20. Nifontova MG, Lebedeva AV, Kulikov NV (1979) Accumulation of Sr-90 and Cs-137 in live and dead lichens. Soviet J Ecol 10:73–78 [Ekologiya (1979) 10:94–97]
  • 21. Pinna D, Salvadori O, Tretiach M (1998) An anatomical investigation of calcicolous endolithic lichens from Trieste karst (NE Italy). Plant Physiol 132:183–195
  • 22. Puckett KJ, Nieboer E, Gorzynski MJ, Richardson DHS (1973) The uptake of metal ions by lichens: a modified ion-exchange process. New Phytol 72:329–342
  • 23. Purvis OW (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rock in Scandinavia. Lichenologist 16:197–204
  • 24. Purvis OW (1996) A review of lichens in metal-enriched environments. Lichenologist 28:571–601
  • 25. Purvis OW, Bailey EH, McLean J, Kasama T, Williamson BJ (2004) Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiol J 21:159–167
  • 26. Purvis OW, Elix JA, Gaul KL (1990) The occurrence of copper-psoromic acid in lichens from cupriferous substrata. Lichenologist 22:345–354
  • 27. Richardson DHS (1995) Metal uptake in lichens. Symbiosis 18:119–127
  • 28. Tuominen Y (1967) Studies of the strontium uptake of the Cladonia alpestris thallus. Ann Bot Fenn 4:1–28
  • 29. Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302
  • 30. Williamson BJ, Mikhailova I, Purvis OW, Udachin V (2004) SEM–EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia. Sci Total Environ 322:139–154
  • 31. Wilson MJ (1995) Interactions between lichens and rocks: a review. Crypt Bot 5:299–305
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0104
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.