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Sum rule of the correlation function

Stanistaw Mrowczynski,
Radostaw Maj

Abstract We discuss a sum rule satisfied by the correlation function of two particles with small relative momenta. We first
derive the sum rule, which results from the completeness condition of the quantum states of the two particles, and then we
discuss it for the case of strongly interacting pair of neutron and proton and for the Coulomb system of two charged particles.
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The correlation functions of two identical or nonidentical
particles with small relative momenta have been extensively
studied in nuclear collisions for bombarding energies from
tens of MeV [4] to hundreds of GeV [6]. These functions
provide information about space-time characteristics of
particle sources in the collisions. As shown by one of us
[11], the correlation function integrated over particle
relative momentum satisfies a simple relation due to the
completeness of quantum states. The aim of this note is to
discuss the sum rule to prove or disprove its usefulness in
the experimental studies. A more detailed analysis will be
given elsewhere.

The starting point of our considerations is the formula
repeatedly discussed in the literature which expresses the
correlation function R(q) of two particles with the relative
momentum q as

(1) R(@) = [ d*rD, (6)[ (0]

where @,(r) is the wave function of relative motion of the
two particles and D,(r) is the effective source function
defined through the probability density D,(r, ) to emit the
two particles at the relative distance r and the time
difference z. Namely, D,(r) = [dtD,(r - vt,t) with v being
the particle pair velocity with respect to the source. The
source function D,(r) is normalized as jd3rD,(r) =1 We
observe that the spherically symmetric single-particle
source function provides, in general, the effective source
D,(r) which is elongated along the velocity v. To simplify
the analysis, we, however, assume here that the source
function D,(r) is spherically symmetric. Such an assumption
makes sense when the particles are emitted instantaneously.
Also for simplicity, we treat the formula (1) non-rela-
tivistically. The single-particle source function is chosen in
the Gaussian form. Then, the effective relative source
function is also Gaussian
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(2) Dr (l‘) Z;mexp(—r—zzj
(4nr02) 41

and the mean radius squared of a single-particle source
equals <r’*> = 3rg.

Let us consider the correlation function integrated over
the relative momentum. Since R(q) - 1 when q — o, we
rather discuss the integral of (R(q) - 1). Using eq. (1) and
taking into account the normalization condition of D,(r)
one finds after changing order of the r- and g-integration

the expression
(|¢q< of -1,

It appears that the integral over q in the r.h.s. of eq. (3) is
determined by the quantum-mechanical completeness
condition. Indeed, the wave functions satisfy the well-
known closure relation

Ici3rl) (r)j

) j T g (g (r Z%(r) b (1)

(2n)°

=50 (r—r')i6(3)(r+r')

where ¢, represents a possible bound state of the two
particles of interest. When the particles are not identical
the second term in the r.h.s. of eq. (4) should be neglected.
This term guarantees a right symmetry of both sides of the
equation for the case of identical particles. The upper sign
is for bosons, while the lower one for fermions. The wave
function of identical bosons (fermions) @,(r) is (anti-)-
symmetric when r — -1, and the r.h.s of eq. (4) is indeed
(anti-)symmetric when r — -r or r’ - -I’. If the particles
of interest carry spin, the sum over the spin degrees of
freedom in the Lh.s. of eq. (4) is implied.

When the integral representation of 39 (r-r’)is used,
the limit r — 1’ can be taken in eq. (4), and we get the
relation

6 [ [ogr] -1) =25 (2r) ~htef

(2n)

which substituted into eq. (3) provides the desired sum rule
(6) jd3q(R(q)—1):jnézy(oy-EZAa

where A4 is the formation rate of the boSnd state o

% Ay = (20) [ @D, (0)q ()] -

A, relates the cross section to produce the bound state o
with the momentum P to the cross section to produce the
two particles with the momenta P/2. The non-relativistic
relation reads

dc® do

dP_A“MPQMGVD

where the tilde means that the short range correlations
are removed from the two-particle cross section which is
usually taken as a product of the single-particle cross
sections.

The completeness condition is, obviously, valid for any
inter-particle interaction. It is also valid when the pair of
particles interact with the time-independent external field,
e.g. the Coulomb field generated by the particle source.
Thus, the sum rule (6) holds under very general conditions
unless the basic formula (1) is justified. In the case of non-
interacting particles described by a plane wave, the sum
rule (6) was found in [12], see also [2, 3], by means of explicit
integration of (R(q) - 1) over q.

Let us apply the sum rule to the correlation function of
strongly interacting system of neutron and proton. The
nucleons emitted from a source are usually assumed to be
unpolarized, and one considers the spin-averaged corre-
lation function R which is a sum of the singlet and triplet
correlation functions R*" with weight coefficients 1/4 and
3/4, respectively. Here, we consider, however, the singlet
and the triplet correlation functions separately. Then, the
sum rule (6) reads

) [q(R*@-1)=0

©) [q(R'@-1)=-4

where A4 is the deuteron formation rate.

Following [9], we calculate the correlation functions R*/,
assuming that the source radius is significantly greater than
the n-p interaction range. Then, the wave function of the
n-p pair (in a scattering state) can be approximated by its
asymptotic form which is

qr

(10) =T @

where ¢ =|q| and f*'(q), is the scattering amplitude. The
amplitude is chosen as

(11) @)=

st
—a

1
—d*a* ¢* +iga™

where a*' (d*"), is the scattering length (effective range)
of the n-p scattering; @’ = -23.7 fm, d* = 2.7 fm and a' =
5.4 fm, d° = 1.7 fm [10]. The amplitude (11) takes into
account only the s-wave scattering. This is justified as long
as only small relative momenta are considered. Substituting
the wave function (10) into the formula (1) with the source
function (2), we get the n-p correlation function. Since the
source described by the formula (2) is spherically symmetric
the correlation function depends on g only.

In Figs. 1 and 2 we show the singlet and triplet corre-
lation function, respectively, computed for three values of
the source size parameter r,. As seen, the triplet correlation
is negative in spite of the attractive neutron-proton inter-
action. This happens, in accordance with the sum rule (9),
because the neutron and proton, which are close to each
other in the phase-space, tend to exist in a bound not in
a scattering state. And the n-p pairs, which form a deuteron,
deplete the sample of n-p pairs and produce a dip of the
correlation function at small relative momenta.
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Fig. 1. The singlet correlation function of neutron and proton.

The deuteron formation rate, which enters the sum rule
(9), is computed with the deuteron wave function in the
Hulthén form

1/2
(XB(OH‘B) e _e—ﬁr

271((1—[3)2 r

(12) g (r) =

with o = 0.23 fm™ and B = 1.61 fm™ [7]. Substituting the
wave function (12) and the source function (2) into eq. (7),
we get the deuteron formation rate 4.

Although the sum rule (6) assumes the integration up
to the infinite momentum, one expects that the integral in
eq. (6) saturates at sufficiently large g. To discuss the
problem quantitatively we define the function

Imax

(13) S (qmax) =47 | dg ¢* (R(g)-1).

0
We assume here that the correlation function depends on
q only. Then, the angular integration is trivially performed.
In Figs. 3 and 4 we display the function S(g,,,,) found
for the singlet and triplet correlation function presented
in Figs. 1 and 2, respectively. Although S(¢,,..,) at 1arge ¢,
saturates for both the singlet and for the triplet correlation
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Fig. 2. The triplet correlation function of neutron and proton.
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Fig. 3. The function S(q,,,,) for the singlet correlation function.
To set the scale, the corresponding values of the deuteron
formation rate are given.

function, neither the sum rule (8) nor (9) is satisfied. The
singlet S(g,,.) does not vanish at large g,,,,., While the triplet
S(gmax) is NOt negative. However, comparing the numerical
values of S(q,,.) to the corresponding deuteron formation
rate, which sets the characteristic scale, one sees that with
growing r, the sum rule is violated less and less dramatically.
It is not surprising as the asymptotic form of the wave
function (10) and the s-wave approximation become then
more accurate. The formula (13) shows that due to the
factor ¢* even small deviations of the correlation function
from unity at large g generate sizable contribution to S.
Therefore, one should take into account higher partial
waves to satisfy the sum rule.

Aswell known, the Coulomb problem is exactly solvable
within the non-relativistic quantum mechanics. The exact
wave function of two non-identical particles interacting due
to the repulsive Coulomb force is given as

8

(14) ¢, (r) = equ"(l +i§jei‘”/2F(—i§,l, iqn]

where ¢ =|q|, A = pe*/8nwith p being the reduced mass
of the two particles and *e is the charge of each of them;
F denotes the hypergeometric confluent function, and n is
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Fig. 4. The function S(g,,,,) for the triplet correlation function.
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the parabolic coordinate (see below). The wave function
for the attractive interaction is obtained from (14) by means
of the substitution A — —A. When one deals with identical
particles, the wave function @,(r) should be replaced by its
(anti-)symmetrized form. The modulus of the wave

function (14) equals
F(—i&,l,iqn]
q

2
[0q )| =G(g)
where G(g) is the so-called Gamov factor defined as

2

27A 1
G(g)=—

1 exp [mj -1

q
As seen, the modulus of the wave function of non-identical
particles solely depends on the parabolic coordinate n.
Therefore, it is natural to calculate the Coulomb correlation
function in the parabolic coordinates:n =r -z, =r +z

and @ with @ being the azimuthal angle. Then, the corre-
lation function computed with the Gaussian source function

(15)

(2) equals
) 2 2
(16) Rg)=—YL [dnexp ~ F(—i&,l,iqnj
2 Ty 0 167'0 q

where the integration over § has been performed.

In Fig. 5 we demonstrate the correlation function of
non-identical repelling particles given by eq. (16). Figure 6
shows the function S(g,,,,) defined in eq. (13) which is
computed for the correlation functions presented in Fig. 5.
According to the sum rule (6), S(¢.) should vanish for
sufficiently large g,.... As seen in Fig. 6, the function S(q,,.,)
does not seem to saturate at large g,,,, and the sum rule is
badly violated.

What is wrong here? The derivation of the sum rule
(6) implicitly assumes that the integral in the Lh.s. of eq. (6)
exists i.e. it is convergent. Otherwise interchanging of the
integrations over q and over r, which leads to eq. (3), is
mathematically illegal. Unfortunately, the Coulomb correla-
tion functions appear to decay too slowly with g, and conse-
quently the integral in the left hand side of eq. (6) diverges.
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Fig. 5. The Coulomb correlation function of non-identical
repelling particles.
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Fig. 6. The function S(g,,,,) for the Coulomb correlation function
of non-identical repelling particles.

To clarify how the integral diverges one has to find the
asymptotics of the correlation function at large g. It is rather
difficult task as one has to determine the behavior of wave
function (14) at large g for any r, and then one has to
perform the integration over r. Up to our knowledge, the
problem of large g asymptotics of the Coulomb correlation
function has not been satisfactorily solved although it has
been discussed in several papers [1, 5, §, 13, 14]. We have
not found a fully satisfactory solution but our rather tedious
analysis, which will be published elsewhere, suggests that
(R(g) -1) ~ 1/g? when g — oo. Then, the integral in the left
hand side of eq. (6) linearly diverges. We observe that the
Gamov factor (15), which represents a zero size source and
decays as 1/q at large g, leads to the quadratic divergence
of the integral (6). We also note here that the asymptotics
1/g* of the correlation function does not have much to do
with the well known classical limit of the correlation func-
tion[1, 5, 8,13, 14]. Since the large g limit of the correlation
function corresponds to the small separation of the charged
particles, which at sufficiently large g is smaller than the
de Broglie wave length, the classical approximation breaks
down.

The results presented here are not very encouraging.
Although the sum rule (6) provides a rigorous relationship
it is not very useful. The model calculations of the n-p
correlation function do not satisfy the sum rule as the
s-wave approximation, which is sufficient to properly
describe a general shape of the correlation function, fails
to correctly reproduce its tail. Unfortunately, the sum rule
is very sensitive to the tail. The situation with the Coulomb
interaction is a real disaster. Due to the strong electrostatic
repulsion at small distances the correlation function too
slowly decays at large momenta, and, consequently, the
sum-rule integral is divergent. Then, the sum rule is not
applicable at all. However, the sum rule, being rather
unpractical, explains some qualitative features of the
correlation function. In particular, it shows that in spite of
the attractive interaction the correlation can be negative
as it happens in the triplet channel of neutron and proton
due to the deuteron formation.
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