PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plant uptake of radiocesium from contaminated soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference Bioaccumulation of Radionuclides and Heavy Metals - as a Marker of Environmental Contamination, Kazimierz Dolny upon Vistula, Poland, September 26-28, 2004
Języki publikacji
EN
Abstrakty
EN
Phytoextraction field experiments were conducted on soil contaminated with radiocesium to determine the capacity of autochthonous grasses and weeds to accumulate 137Cs. The aim of the study was to evaluate the potential of spontaneously growing vegetation as a tool for decontamination of non-agricultural contaminated land. As a test field, the closed monitored area of the radioactive wastewater treatment plant of the Nuclear Power Plant in Jaslovské Bohunice, Slovakia was used. Contamination was irregularly distributed from the level of background to spots with maximal activity up to 900 Bq/g soil. Sequential extraction analysis of soil samples showed the following extractability of radiocesium (as percent of the total): water < 0.01%; 1 M MgCl2 = 0.3-1.1%; 1 M CH3COONa = 0.3-0.9%; 0.04 M NH4Cl (in 25% CH3COOH) = 0.9-1.4%; and 30% H2O2 - 0.02 M HNO3 = 4.5-9.0%. Specific radioactivity of the most efficiently bioaccumulating plant species did not exceed 4.0 kBq kg 1 (dry weight biomass). These correspond to the soil-to-plant transfer factor (TF) values up to 44.4 × 10 4 (Bq kg 1 crop, d.w.)/(Bq kg 1 soil, d.w.). Aggregated transfer factor (Tag) of the average sample of the whole crop harvested from defined area was 0.5 × 10 5 (Bq kg 1 d.w. crop)/(Bq m 2 soil). It can be concluded that low mobility of radiocesium in analysed soil type, confirmed by sequential extraction analyses, is the main hindrance for practical application of autochthonous plants as a phytoremediation tool for aged contaminated area of non-cultivated sites. Plant cover can efficiently serve only as a soil surface-stabilising layer, mitigating the migration of radiocesium into the surrounding environment.
Czasopismo
Rocznik
Strony
9--11
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
autor
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel./Fax: +421335565384, +421335565185
autor
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel./Fax: +421335565384, +421335565185
autor
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel./Fax: +421335565384, +421335565185
autor
  • Department of Biotechnology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, 2 Nam. J. Herdu Str., 917 01 Trnava, Slovak Republic, Tel./Fax: +421335565384, +421335565185
Bibliografia
  • 1. Absalom JP, Young SD, Crout NMJ et al. (2001) Predicting the transfer of radiocaesium from organic soils to plants using soil characteristics. J Environ Radioact 52:31−43
  • 2. Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167−175
  • 3. FAO/IAEA/IUR (1998) Protocol for experimental studies on the uptake of radionuclides from soils by plants
  • 4. Fuhrmann M, Lassat MM, Ebbs D, Kochian LV, Cornish J (2002) Uptake of cesium-137 and strontium-90 from contaminated soil by three plant species; application to phytoremediation. J Environ Qual 31:904−909
  • 5. Ianni C, Riggieri N, Rivaro P, Frache R (2001) Evaluation and comparison of two selective extraction procedures for heavy metal speciation in sediments. Anal Sci 17:1273−1278
  • 6. Linkov I, Yoshida S, Steiner M (2000) Fungi contaminated by radionuclides: critical review of approaches to modeling. In: Proc of the 10th Int Congress of the Int Radiat Protect Assoc (IRPA-10), 14−19 May 2000, Hiroshima, Japan, P-4b-255
  • 7. Paasikallio A (1999) Effect of biotite, zeolite, heavy clay, bentonite and apatite on the uptake of radiocesium by grass from peat soil. Plant Soil 206:213−222
  • 8. Raskin I, Ensley BD (eds) (1999) Phytoremediation of toxic metals: using plants to clean up the environments. Wiley Interscience, New York
  • 9. Rigol A, Roig M, Vidal M, Rauret G (1999) Sequential extractions for the study of radiocesium and radiostrontium dynamics in mineral and organic soils from Western Europe and Chernobyl areas. Environ Sci Technol 33:887−895
  • 10. Tang S, Chen Z, Li H, Zheng J (2003) Uptake of 134Cs in the shoots of Amaranthus tricolor and Amaranthus cruentus. Environ Pollut 125:305−312
  • 11. Terry N, Banuelos G (eds) (2000) Phytoremediation of contaminated soil and water. CRC Press Inc, Boca Raton
  • 12. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation particulate trace metals. Anal Chem 51:844−851
  • 13. Zhang S, Wang S, Shan X (2001) Effect of sample pretreatment upon the metal speciation sediments by sequential extraction procedure. Chem Spec Bioavailab 13:69−74
  • 14. Zhu YG, Smolders E (2000) Plant uptake of radiocaesium: eview of mechanisms, regulation and application. J Exp Bot 51:1635−1645
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.