PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Free radicals in chemistry, biology and medicine: contribution of radiation chemistry

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Jubilee Symposium for the 50th anniversary of the foundation of the Institute of Nuclear Research "Atomic Science in the XXI Century" June 16, 2005, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
The scope of this article is limited to the concept of free radical and its historical background and a brief introduction to time-resolved techniques (pulse radiolysis, laser flash photolysis), which allowed direct observation of free radicals on real time. The selected contributions of pulse radiolysis to better understanding the role of free radical reactions in chemistry, biology and medicine are presented and some selected future research needs and opportunities in radiation chemistry are briefly addressed.
Czasopismo
Rocznik
Strony
67--76
Opis fizyczny
Bibliogr. 101 poz., rys.
Twórcy
autor
  • Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22-504 1336, Fax: +48 22-8111532, kris@ichtj.waw.pl
Bibliografia
  • 1. Alfassi ZB (ed.) (1997) Peroxyl radicals. John Wiley & Sons Ltd, Chichester
  • 2. Alfassi ZB (ed.) (1998) N-Centered radicals. John Wiley & Sons Ltd, Chichester
  • 3. Alfassi ZB (ed.) (1999) S-Centered radicals. John Wiley & Sons Ltd, Chichester
  • 4. Asmus KD (2001) Heteroatom-centered free radicals. Some selected contributions by radiation chemistry. In: S74 K. Bobrowski Jonah CD, Rao BSM (eds) Radiation chemistry: present status and future trends. Elsevier Science, Amsterdam, pp 341−393
  • 5. Asmus KD, Bonifaèić M (1999) Sulfur-centered reactive intermediates as studied by radiation chemical and complementary techniques. In: Alfassi ZB (ed.) S-Centered radicals. John Wiley & Sons Ltd, Chichester, pp 141−191
  • 6. Asmus KD, Bonifaèić M (2000) Free radical chemistry. In: Sen CK, Packer L, Hänninen O (eds) Handbook of oxidants and antioxidants in exercise. Elsevier Science B.V., Amsterdam, pp 3−54
  • 7. Bartels DM, Takahashi K, Cline JA, Marin TW, Jonah CD (2005) Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron. J Phys Chem A 109:1299−1307
  • 8. Bauld NL (ed.) (1997) Radicals, ion radicals, and triplets. Wiley-VCH, Inc., New York
  • 9. Belloni J, Amblard J, Delcourt MO (1994) Radiation chemistry. Annu Rep Prog Chem C 91:351−393
  • 10. Belloni J, Delcourt MO, Houée-Levin C, Mostafavi M (2000) Radiation chemistry. Annu Rep Prog Chem C 96:225−295
  • 11. Bensasson RV, Land EJ, Truscott TG (eds) (1993) Excited states and free radical in biology and medicine. Oxford University Press, Oxford
  • 12. Bobrowski K (1999) Electron migration in peptides and proteins. In: Mayer J (ed.) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers PWN, Warszawa, pp 177−204
  • 13. Bobrowski K, Foryś M, Mayer J, Michalik J, Narbutt J, Zimek Z (2004) Radiation chemistry, nuclear chemistry and radiochemistry. In: Marciniec B (ed.) Misja chemii. Wydawnictwo Poznańskie, Poznań, pp 253−279 (In Polish)
  • 14. Bobrowski K, Holcman J (1989) Formation and stability of intramolecular three-electron S∴N, S∴S, and S∴O bonds in one-electron oxidized simple methionine peptides. Pulse radiolysis study. J Phys Chem 93:6381−6387
  • 15. Bobrowski K, Holcman J, Poznanski J, Ciurak M, Wierzchowski KL (1992) Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 5. Trp• → Tyr• radical transformation in H-Trp-(Pro)n-Tyr-OH series of peptides. J Phys Chem 96:10036−10043
  • 16. Bobrowski K, Holcman J, Poznański J, Wierzchowski KL (1997) Pulse radiolysis of intramolecular electron transfer in model peptides and proteins. 7. Trp• → TyrO• radical transformation in hen-egg white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding. Biophys Chem 63:153−166
  • 17. Bobrowski K, Poznanski J, Holcman J, Wierzchowski KL (1998). In: Wishart JF, Nocera DG (eds) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC, pp 131−143
  • 18. Bobrowski K, Poznanski J, Holcman J, Wierzchowski KL (1999) Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 8. Trp[NH•+] →Tyr[O•] radical transformation in H-Trp-(Pro)n-TyrOH,n = 3−5, series of peptides. J Phys Chem B 103:10316−10324
  • 19. Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M (1990) Intramolecular electron transfer in peptides containing methionine, tryptophan and tyrosine. A pulse radiolysis study. Int J Radiat Biol 57:919−932
  • 20. Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M (1992) Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. IV. Met/S∴Br → Tyr/O• radical transformation in aqueous solution of H-Tyr-(Pro)n-Met-OH peptides. Int J Radiat Biol 62:507−516
  • 21. Bonifaèić M, Armstrong DA, Carmichael I, Asmus KD (2000) β-Fragmentation and other reactions involving aminyl radicals from aminoacids. J Phys Chem B 104:643−649
  • 22. Bonifaèić M, Hug GL, Schöneich C (2000) Kinetics of the reactions between sulfide radical cation complexes, [S∴S]+ and [S∴N]+, and superoxide or carbon dioxide radical anions. J Phys Chem A 104:1240−1245
  • 23. Bonifaèić M, Štefanić I, Hug GL, Armstrong DA, Asmus KD (1998) Glycine decarboxylation; the free radical mechanism. J Am Chem Soc 120:9930−9940
  • 24. Butterfield DA, Kanski J (2002) Methionine residue 35 is critical for the oxidative stress and neurotoxic properties of Alzheimer’s amyloid β-peptide 1−42. Peptides 6421:1−10
  • 25. Buxton GV (1999) Measurement of rate constants for radical reactions in liquid phase. In: Alfassi ZB (ed.) General aspects of the chemistry of radicals. John Wiley & Sons Ltd, Chichester, pp 51−77
  • 26. Cadenas E, Packer L (eds) (1999) Understanding the process of aging. Marcel Dekker, Inc., New York
  • 27. Candeias L (1998) Indolyl radicals. In: Alfassi ZB (ed.) (1998) N-Centered radicals. John Wiley & Sons Ltd, Chichester, pp 577−597
  • 28. Chateauneuf JE (1999) Reactions of free radicals in supercritical fluids. In: Alfassi ZB (ed.) (1999) General aspects of the chemistry of radicals. John Wiley & Sons Ltd, Chichester, pp 241−277
  • 29. Chiappe C, Pieraccini D (2005) Ionic liquids: solvent properties and organic reactivity. J Phys Org Chem 18:275−297
  • 30. Cline J, Takahashi K, Marin TW, Jonah CD, Bartels DM (2002) Pulse radiolysis of supercritical water. 1. Reactions between hydrophobic and anionic species. J Phys Chem A 106:12260−12269
  • 31. Cutler RG, Packer L, Bertram J, Mori A (eds) (1995) Oxidative stress and ageing. Birkhäuser Verlag, Basel
  • 32. Davies MJ, Dean RT (eds) (1997) Radical-mediated protein oxidation. From chemistry to medicine. Oxford University Press, Oxford
  • 33. DeFelippis MR, Faraggi M, Klapper MH (1990) Evidence for through-bond long-range electron transfer in peptides. J Am Chem Soc 112:5640−5641
  • 34. Ebert M, Keene JP, Swallow AJ, Baxendale JH (eds) (1965) Pulse radiolysis. Academic Press, New York
  • 35. Faraggi M, DeFelippis MR, Klapper MH (1989) Longrange electron transfer between tyrosine and tryptophan in peptides. J Am Chem Soc 111:5151−5147
  • 36. Faraggi M, Klapper MH (1991) Intramolecular electron transfer reactions in peptides and proteins. In: Ferradini C, Jay-Gerrin JP (eds) Excess electrons in dielectric media. CRC Press, Boca Raton, pp 397−423
  • 37. Farhataziz, Rodgers MAJ (eds) (1987) Radiation chemistry. Principles and applications. VCH Publishers, New York
  • 38. Farver O, Canters GW, van Amsterdam I, Pecht I (2003) Intramolecular electron transfer in a covalently linked mutated azurin dimer. J Phys Chem B 107:6757−6760
  • 39. Farver O, Skov LK, Pascher T et al. (1993) Intramolecular electron transfer in single site-mutated azurins. Biochemistry 32:7317−7322
  • 40. Fossey J, Lefort D, Sorba J (eds) (1995) Free radicals in organic chemistry. John Wiley&Sons, Chichester
  • 41. Garrett BC, Dixon DA, Camaioni DM et al. (2005) Role of water in electron-initiated processes and radical chemistry: issues and scientific advances. Chem Rev 105:355−369
  • 42. Glass RS (1999) Sulfur radical cations. In: Topics in current chemistry, vol. 205. Springer Verlag, Berlin, pp 1−87
  • 43. Goldstein S, Czapski G (1995) The reaction of •NO with O2 •− and HO2 •. A pulse radiolysis study. Free Radic Biol Med 19:505−510
  • 44. Govindaraju K, Christensen HEM, Lloyd E et al. (1993) A new approach to the study of intramolecular electron transfer reactions of metalloproteins: pulse radiolysis of NO2− -modified tyrosine derivatives of plastocyanin. Inorg Chem 32:40−46
  • 45. Grodkowski J, Neta P (2002) Formation and reaction of Br2 •− radicals in the ionic liquid methyltributylammonium bis[(trifluromethyl)sulfonyl]imide. J Phys Chem A 106:11130−11134
  • 46. Grodkowski J, Neta P (2002) Reaction kinetics in the ionic liquid methyltributylammonium bis[(trifluromethyl)sulfonyl]imide. Pulse radiolysis study of 4-mercaptobenzoic acid. J Phys Chem A 106:9030−9035
  • 47. Grodkowski J, Neta P (2002) Reaction kinetics in the ionic liquid methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide. Pulse radiolysis study of • CF3 radical reactions. J Phys Chem A 106:5468−5473
  • 48. Grodkowski J, Neta P, Wishart JF (2003) Pulse radiolysis study of the reactions of hydrogen atoms in the ionic liquid methyltributylammonium bis[(trifluromethyl)-sulfonyl]imide. J Phys Chem A 107:9794–9799
  • 49. Halliwell B, Gutteridge JMC (eds) (1999) Free radicals in biology and medicine, 3rd ed. Oxford University Press, Oxford
  • 50. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Geront 11:298−300
  • 51. Houée-Levin C, Sicard-Roselli C (2001) Radiation chemistry of proteins. In: Jonah C, Rao BM (eds) Radiation chemistry: present status and future prospects. Elsevier, Amsterdam, pp 553−584
  • 52. Isied SS (1991) Electron transfer across model polypeptide and protein bridging ligands. Distance dependence, pathways and protein conformational states. In: Bolton JR, Mataga N, McLendon G (eds) Electron transfer in inorganic, organic, and biological systems. Advanced Chemistry Series, vol. 228. American Chemical Society, Washington, DC, pp 229−246
  • 53. Isied SS (1991) Mediation of electron transfer by peptides and proteins: current status. In: Sigel H, Sigel A (eds) Metal ions in biological systems. American Chemical Society, Washington, DC 27:1−56
  • 54. Isied SS, Ogawa MY, Wishart JF (1992) Peptidemediated intramolecular electron transfer: long-range distance dependence. Chem Rev 92:381−394
  • 55. Iwaoka M, Takemoto S, Tomoda S (2002) Statistical and theoretical investigations on the directionality of nonbonded S•••O interactions. Implications for molecular design and protein engineering. J Am Chem Soc 124:10613−10620
  • 56. Kadlcik V, Sicard-Roselli C, Mattioli TA, Kodicek M, Houée-Levin C (2004) One-electron oxidation of β-amyloid peptide: sequence modulation of reactivity. Free Radic Biol Med 37:881−891
  • 57. Karolczak S (1999) Pulse radiolysis – experimental features. In: Mayer J (ed.) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers PWN, Warszawa, pp 11−37
  • 58. Klapper MH, Faraggi M (1979) Applications of pulse radiolysis to protein chemistry. Q Rev Biophys 12:465−519
  • 59. Kyrytsis P, Messerschmidt A, Huber R, Salmon GA, Sykes AG (1993) Pulse radiolysis studies on the oxidized form of the multicopper enzyme ascorbate oxidase: evidence for two intramolecular electron transfer steps.J Chem Soc Dalton Trans 731−736
  • 60. Lee H, Faraggi M, Klapper MH (1992) Long range electron transfer along an α-helix. Biochim Biophys Acta1159:286−294
  • 61. Marcinek A, Zielonka J, Gębicki J, Gordon CM, Dunkin IR (2001) Ionic liquids: novel media for characterization of radical ions. J Phys Chem A 105:9305–9309
  • 62. Marin TW, Cline JW, Takahashi K, Bartels DM, Jonah CD (2002) Pulse radiolysis of supercritical water. 2. Reaction of nitrobenzene with hydrated electrons and hydroxyl radicals. J Phys Chem A 106:12270−12279
  • 63. Marin TW, Jonah CD, Bartels DM (2005) Reaction of hydrogen atoms with hydroxide ions in high-temperature and high-pressure water. J Phys Chem A 109:1843−1848
  • 64. Matheson MS, Dorfman LM (1969) Pulse radiolysis. MIT Press, Cambridge
  • 65. Mayer J (ed.) (1999) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers PWN, Warszawa
  • 66. Miller JR, Penfield K, Johnson M, Closs G, Green N (1998) Pulse radiolysis measurements of intramolecular electron transfer with comparisons to laser photoexcitation. In: Wishart JF, Nocera DG (eds) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC, pp 161−176
  • 67. Mirkowski J, Wisniowski P, Bobrowski K (2001) A nanosecond pulse radiolysis system dedicated to the new LAE 10 accelerator in the INCT. INCT Annual Report 2000:31−33
  • 68. Moreira I, Sun J, Cho MOK, Wishart JF, Isied SS (1994) Electron transfer from heme of cytochrome c to two equivalent redox-modified sites, histidine 33 and methionine 65: the importance of electronic effects and peptide network. J Am Chem Soc 116:8396−8397
  • 69. Nauser T, Jacoby M, Koppenol WH, Squier TC, Schöneich C (2005) Calmodulin methionine residues are targets for one-electron oxidation by hydroxyl radicals: formation of S∴N three-electron bonded radical complexes. Chem Commun:587−589
  • 70. Özben T (ed.) (1998) Free radicals, oxidative stress, andantioxidants. Pathological and physiological significance.Plenum Press, New York
  • 71. Packer L, Cadenas E (eds) (1995) Biothiols in health and disease. Marcel Dekker, Inc., New York
  • 72. Pecht I, Farver O (1998) Pulse radiolysis: A tool for investigating long-range electron transfer in proteins. In: Wishart JF, Nocera DG (eds) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC, pp 65−79
  • 73. Perkins MJ (ed.) (1994) Radical chemistry. Ellis Horwood, New York
  • 74. Pogocki D (2003) Alzheimer’s β-amyloid peptide as a source of neurotoxic free radicals: the role of structural effects. Acta Neur Exp 63:131−145
  • 75. Pogocki D, Schöneich C (2002) Redox properties of Met35 in neurotoxic β-amyloid peptide. A molecular modeling study. Chem Res Toxicol 15:408–418
  • 76. Prütz WA, Butler J, Land EJ (1985) Methionyl → tyrosyl radical transitions initiated by Br2 •− in peptide model systems and ribonuclease A. Int J Radiat Biol 47:149−156
  • 77. Prütz WA, Butler J, Land EJ, Swallow AJ (1986) Unpaired electron migration between aromatic and sulfur peptide units. Free Radic Res Commun 2:69−75
  • 78. Prütz WA, Land EJ, Sloper RW (1981) Charge transfer in peptides. J Chem Soc Faraday Trans I 77:281−292
  • 79. Schöneich C (1995) Thiyl radicals, perthiyl radicals, and oxidative reactions. In: Packer L, Cadenas E (eds) Biothiols in health and disease. Marcel Dekker, Inc., New York, pp 21−47
  • 80. Schöneich C (2002) Redox processes of methionine relevant to β-amyloid oxidation and Alzheimer’s disease. Arch Biochem Biophys 397:370−376
  • 81. Schöneich C (2005) Methionine oxidation by reactive oxygen species: reaction mechanisms and relevance to Alzheimer’s disease. Biochim Biophys Acta 1703:111−119
  • 82. Schöneich C, Pogocki D, Hug GL, Bobrowski K (2003) Free radical reactions of methionine in peptides: mechanisms relevant to β-amyloid oxidation and Alzheimer’s disease. J Am Chem Soc 125:13700−13713
  • 83. Schöneich C, Pogocki D, Wiśniowski P, Hug GL, Bobrowski K (2000) Intramolecular sulfur-oxygen bond formation in radical cations of N-acetylmethionineamide. J Am Chem Soc 122:10224−10225
  • 84. Steenken S (1989) Purine bases, nucleosides, and nuclotides: aqueous solution redox chemistry and transformation reactions of their radical cations and e− and OH adducts. Chem Rev 89:503−520
  • 85. Stuart-Audette M, Blouquit Y, Faraggi M, Sicard-Roselli C, Houée-Levin C, Jolles P (2003) Re-evaluation of intramolecular long-range electron transfer between tyrosine and tryptophan in lysozymes. Eur J Biochem 270:3565−3571
  • 86. Tanner T, Navaratnam S, Parsons BJ (1998) Intramolecular electron transfer in the peptide, histydyltyrosine: a pulse radiolysis study. Free Radic Biol Med 24:671−678
  • 87. Tarr M, Samson F (eds) (1993) Oxygen free radicals in tissue damage. Birkhäuser, Boston
  • 88. von Sonntag C (1987) The chemical basis of radiation biology. Taylor and Francis, London
  • 89. Wardman P (1995) Reactions of thiyl radicals. In: Packer L, Cadenas E (eds) Biothiols in health and disease. Marcel Dekker, Inc., New York, pp 1−19
  • 90. Wardman P (1998) Nitogen dioxide in biology: correlating chemical kinetics with biological effects. In: Alfassi ZB (ed.) N-centered radicals. John Wiley & Sons Ltd, Chichester, pp 155−179
  • 91. Wierzchowski K (1997) Intramolecular electron transfer between tryptophan radical and tyrosine in oligoprolinebridged model peptides and hen egg-white lysozyme. Acta Biochim Pol 44:627−644
  • 92. Winyard PG, Blake DR, Evans CH (eds) (2000) Free radicals and inflammation. Birkhäuser Verlag, Basel
  • 93. Wishart JF (1998) Accelerators and other sources for the study of radiation chemistry. In: Wishart JF, Nocera DG (eds) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC, pp 35−50
  • 94. Wishart JF (1998) Photochemistry and radiation chemistry: a perspective. In: Wishart JF, Nocera DG (eds) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC, pp 1−4
  • 95. Wishart JF (2003) Radiation chemistry of ionic liquids: reactivity of primary species. In: Rogers RD, Seddon KR (eds) Ionic liquids as green solvents. Progress and prospects. American Chemical Society, Washington, DC, pp 381−396
  • 96. Wishart JF, Lall-Ramnarine SI, Raju R et al. (2005) Effects of functional groups substitution on electron spectra and solvation dynamics in a family of ionic liquids. Radiat Phys Chem 72:99−104
  • 97. Wishart JF, Nocera DG (eds) (1998) Photochemistry and radiation chemistry. Complementary methods for the study of electron transfer. Advanced Chemistry Series, vol. 254. American Chemical Society, Washington, DC
  • 98. Wiśniowski P, Bobrowski K, Carmichael I, Hug GL (2004) Bimolecular homolytic substitution (SH2) reaction with hydrogen atoms. Time-resolved electron spin resonance detection in the pulse radiolysis of α-(methylthio)acetamide. J Am Chem Soc 126:14468−14474
  • 99. Wong BS, Wang H, Brown DR, Jones IM (1999) Selective oxidation of methionine residues in prion proteins. Biochem Biophys Res Commun 259:352−355
  • 100. Yu BP (ed.) Free radicals in aging. CRC Press, Boca Raton
  • 101. Zimek Z, Bułka S, Dźwigalski Z, Roman K (2000) Short pulse electron accelerator for pulse radiolysis study. In: Proc Eighth European Particle Accelerator Conf (EPAC2000), Vienna, Austria, pp 2379−2381
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.