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Introduction

Free radical chemistry is one of the topics to which
radiation chemistry has made many important and
essential contributions. Research on these usually short-
lived transients has been particularly enhanced since
the development of time-resolved techniques such as
pulse radiolysis (in radiation chemistry) [34, 64] and
laser flash photolysis (in photochemistry) [11], which
allowed direct observation of free radicals on real time.
There is a continuing need for basic research in this
area due to the relevance of free radical reactions in
many fields of chemistry [41], biology [49, 88], and
medicine [49]. Radiation chemistry is a very valuable
and powerful tool for solving fundamental and techno-
logical problems connected with atmospheric and
environmental chemistry, organic synthesis, the polymer
and paint industry, processes occurring in nonstandard
environments such as supercritical media, ionic liquids,
interfacial and heterogeneous systems [41]. Important
applications of radiation chemistry are also connected
with understanding of radical processes that are of par-
ticular interest in biology and medicine. Relevant
examples include radical processes connected with a
damage of biological material [32, 87], oxidative stress
[70, 87], repairing and protective mechanisms [49, 71],
aging [26, 31, 100], inflammation processes [92], and
various diseases including cancer, and neurodegenera-
tive diseases [31, 49, 87]. This article is not and cannot
be an attempt to review important all experiments that
have been conducted over the years by radiation chemists.
There are numerous excellent and comprehensive
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reviews [6, 9, 10, 51, 58] and books [11, 37, 65, 88, 97]
which present and discuss these problems in a more
detailed manner. One of the main purpose of the article
is to familiarize those readers, who are not working in
the free radical chemistry field, with the concept of free
radical and with its brief historical overview which starts
with the discovery of the first free radical 105 years ago.
An equally important purpose is showing why radiation
chemistry, pulse radiolysis in particular, has turned out
to be so useful and successful in free radical research
and is no longer just of specialized interest. A few
selected important achievements emerging in this field
will be highlighted, some future perspectives as far as
new topics and development of new techniques are
concerned will be addressed, and a recently installed at
the Institute of Nuclear Chemistry and Technology in
Warsaw nanosecond pulse radiolysis facility will be
presented.

Historical background [40, 73]

Historically, the triphenylmethyl radical (Ph3C
•)

discovered by Moses Gomberg in 1900 was the first
known organic free radical. In fact, Gomberg’s results
demonstrated for the first time trivalency for carbon
atoms, however, they did not provide the first example
of what we might currently call as a stable organic free
radical. Paneth and Hofeditz presented the first conclu-
sive demonstration of free radicals (•CH3), as reactive
intermediates, in 1929 in their studies of the pyrrolysis
of tetramethyl lead. The involvement of free radicals
in solution chemistry was established in 1937, simulta-
neously by Kharasch and Flory. Kharasch interpreted
addition of hydrogen bromide to alkenes, and Flory
vinyl polymerization in terms of radical chain mechanism.
Ironically, the II World War was an important stimulus
for the development of radical chemistry when US
chemists were called upon to find substitutes for natural
rubber. In 1942−1945 Mayo, Walling and Lewis
established the rules of free radical polymerization and
copolymerization and developed kinetic laws. New
synthetic methods have been developed about 1970 by
various researchers including Barton, Cadogan, Julia,
Giese and others. In recent years, synthetic strategies
based on radical reactions have been more frequently
considered since a great progress has been accom-
plished in the stereoselective control of radical
reactions. The contribution of free radicals in chemical
processes that occur in biological and living systems has
been recognized in 1950. Interestingly, the free radical
theory of ageing proposed nearly 50 years ago (in 1956)
by Harman [50], arosed in part from radiation-chemical
studies. There is a general agreement nowadays that in
biological systems at the molecular level the majority
of oxidative events is associated with an increase in free
radical concentration.

Free-radical concept [8, 40]

A free radical is defined as any atom or molecule that
has a single unpaired electron on one of its orbitals.

Free radicals can have an anionic, cationic, or neutral
character. The singly occupied molecular orbital (SOMO)
is of special importance to free radical chemistry. For
example, addition of a single electron to a neutral mol-
ecule generates unique chemical species called radical
anion. The electronic structure of the radical anion can
be simply illustrated as the entry of an electron into the
lowest-energy unoccupied molecular orbital (LUMO)
of a neutral precursor. The LUMO of the neutral then
becomes the SOMO of the radical anion. On the other
hand, ionization of a neutral molecule (ejection of an
electron) generates a chemical species known as a radical
cation. The electron is usually removed from the
highest-energy occupied molecular orbital (HOMO) of
a neutral molecule, which then becomes the SOMO
of the radical cation. The presence of unpaired electrons
has a very important consequence, namely the generally
very high reactivity of such species. Accordingly, most
radical-radical or radical-molecule reactions occur in
diffusion-controlled processes. The high rate at which
most of these processes usually occur constitutes the
basic problem in studies of free radical reactions. One
intrinsic parameter that lowers this value is an internal
stabilization of the free radical due to delocalization of
spin density into existing bonds or atoms of particular
high electron affinity or to adjacent aromatic π-systems.
A second parameter that influences the rate of radical
reactions is the activation energy, i.e. the energy diffe-
rence between the reagents and the highest-energy
transition state [40].

Selected examples of most important radicals

The most abundant and important radicals are those
located on carbon, oxygen [1], sulfur [3], and nitrogen
atoms [2]. The carbon-centered radicals are formed
mostly as a result of hydrogen atom abstraction from
the respective organic molecules. Alkyl (RC•HR’),
hydroxyalkyl (RC•HOH), acyl (RC•=O), α-(alkylthio)-
alkyl (RSC•HR’) radicals are given as selected examples.
Most of the oxygen-centered radicals are either derived
from or associated with the presence of molecular
oxygen. The most important and particularly relevant
radicals are: hydroxyl (•OH), peroxyl (ROO•), alkoxyl
(RO•), phenoxyl (ArO•), and semiquinone (HO-ArO•)
radicals, and a superoxide radical anion (O2

•−). While
the •OH is the most reactive among the O-centered
radicals, ROO•  are probably the most abundant
O-centered radicals in biological systems. All of these
radicals are either strong (•OH) or moderately good
oxidants except O2

•− which itself is a moderate reductant.
In recent years, S-centered radicals have attracted
considerable attention in view of the very interesting
redox chemistry [5, 79, 89]. One of the most important
sulfur-centered radicals is the thiyl radical, RS•, which
is the one-electron redox intermediate between thiols
(RSH) and disulfides (RSSR). Some reactions of sulfur
radical cations (R2S

•+, (R2SSR2)
•+, (RSSR)•+, Ar2S

•+)
have attracted interest for their application in organic
synthesis and as intermediates in biological redox systems
[42]. As an example of the novel reaction behaviors, is
the propensity of alkyl sulfide radical cations (R2S

•+)
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to bond to electron rich centers (S, O, N, Cl, Br, I, P) to
form 2c-3e bonds [4, 5]. N-centered radicals have
importance in all fields of chemistry starting with upper
atmosphere chemistry, chemical synhesis, and ending
with metabolism processes in biology. The most
commonly encountered N-centered radicals are •NOx
radicals (•NO, •NO2 and •NO3). •NO is involved in many
important physiological functions, including neuro-
transmission. It is, however, believed that fraction of
•NO activity is partly due to the peroxynitrite ONOO−,
formed on coupling with O2

•− [43] and •NO2 which is an
intermediate in the reaction between •NO and O2 [90].
•NO react with many other radicals, for example with
peroxyl (ROO•), tyrosyl (TyrO•), and tryptophyl
(TrpN•) radicals [49]. Other examples of N-centered
radicals of biological relevance are, in particular: aminyl
•NH-R [4] and indolyl radicals (IndN•) (Ind = fused
benzene and pyrrole rings) [27].

Time-resolved techniques (pulse radiolysis vs. laser
flash photolysis)

Any technique for a direct study of fast free radical
reactions must be characterized by a short time of
generation of free radicals and simultaneously comprise
of a correspondingly fast detection system. It is highly
desirable that the formation of the radical is completed
within a time period that is short compared to the
lifetime of the radical. Furthermore, the radical must
exhibit a “detectable property”. In this respect, the most
frequently used “properties” in measurements are:
optical absorbance (in UV, Vis and IR regions), conduc-
tance, electron paramagnetic resonance, resonance
Raman scattering, polarography and microwave
absorption. The invention and development of the fast
time-resolved techniques of pulse radiolysis and laser
flash photolysis have provided a powerful means of
generating and studying a wide range of free radicals,
especially in solution [25]. Due to the instability of
radicals in solution, fast time-resolved techniques (pulse
radiolysis in particular) would remain a premiere tool
for obtaining thermodynamic properties such as solva-
tion energies or standard free energies of formation
for radicals [41]. The principle idea is the same for both
methods and is briefly described below. Generation of
radicals is achieved by admitting short pulses of either
high-energy electrons (MeV range) generated in
accelerators (pulse radiolysis, PR), or photons from
lasers (laser flash photolysis, LFP). In PR and LFP with
optical detection the formation of the radicals and their
subsequent reactions are then monitored by the change
in the transmitted light intensity through the reaction
cell as a function of time using monochromator and
suitable photodectors. The detector converts changes
in the analyzing light intensity into electrical analog
signals. These signals are digitized, displayed and stored
in the digitized oscilloscope, and are subsequently
transferred to the computer for further processing.
Despite the principle similarities of these two techniques,
one important feature differring them must be pointed
out. It is caused by the fact that the energy of
“accelerated” electrons is significantly higher compared

to that of laser photons. As a consequence, the high-
energy electrons while traversing through matter do not
distinguish between the various molecules (solvent and
solute molecules) since they interact with the coulombic
field of any atomic electron or nucleus they pass by.
Therefore, at least for dilute solutions, the respective
energy deposits are preferentially located in the solvent
molecules rather than near solute molecules. In conse-
quence, it leads primarily to solvent-derived radicals
that can subsequently react with the solute forming
solute-drived radicals. On the other hand, the laser
photons may interact directly with solute molecules in
a process that leads either to their excitation or ioniza-
tion. The solute has to absorb light with a sufficiently
high extinction coefficient at the wavelength that corre-
sponds to the energy of incident photons, which is also
sufficient to initiate the desired process. Numerous
valuable data, such as the nature and properties of
radical reaction products including: (i) absolute rate
constants for reactions between selected radicals and
compounds and mutual reactions between radicals,
spectroscopic parameters (absorption and emission
spectra) and thermodynamic (redox potentials, acid-
base equilibria) have been obtained by means of these
two, in fact, complementary techniques [57]. Two poten-
tial advantages of PR over LFP have to be mentioned.
Pulse radiolysis permits: (i) initiation of reactions in
systems that do not contain a chromophore or an excited
state that would be available via photolysis, and (ii)
exclusive generation of either oxidizing or reductive
equivalents in the same chemical system [94].

Nanosecond pulse radiolysis facility at the INCT
(Warszawa) [67]

The nanosecond pulse radiolysis facility based on the
electron linear accelerator installed at the INCT,
Warszawa was constructed in 1999 [101]. The LAE 10
has been solely dedicated to pulse radiolysis experi-
ments with the following nominal parameters: pulse
duration (4−10 ns, 100 ns), electron energy (10 MeV),
pulse current (1 Å), and beam power (0.2 kW) (Fig. 1).
The LAE 10 accelerator and the experimental room

Fig. 1. General view of the linear electron accelerator
(LAE 10) installed in the INCT.
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(Fig. 2, left) is located in a specially developed building
equipped with adequately shielded rooms and with
independent shielding and grounding systems to avoid
distortion produced by high power and high voltage
modulators. The pulse radiolysis setup consists of the
fast digital storage oscilloscope (DSO) (LeCroy 9354AL)
which produces a sufficient number of time points that
multiple time scales can be generated by the computer
from a single kinetic trace originating from DSO. With
the shortest time-base, one can, in principle, with
a single kinetic trace, resolve time constants from a few
nanoseconds to tens, or even hundreds of microseconds.
The simultaneous recording transient absorption data
on multiple time scales is valuable for saving both
experimental time and the amount of valuable samples.
Transients are detected by UV/VIS absorption spectro-
scopy using two kinds of xenon lamps as sources of
analytical light. The data-acquisition subsystem also
includes a Spectra Pro-275 monochromator (Stanford
Reseach Instruments), a 5-stage photomultiplier tube
(Hamamatsu R-955) with a wide spectral response
(160−900 nm) powered with the HV Power Supply
PS310 (Stanford Research Instruments) and a PC
computer (Fig. 2, right). The program controls most of
the peripherals over the GPIB (IEEE488) and RS-232
and RS-485 lines. The software was written using
Delphi 3 (Borland) within Windows 9x/NT/ME. The
new pulse radiolysis set-up due to its modular structure
and applied programming tools is very flexible, adopted
easily to all changes and friendly for users. Schematic
diagram of the PR system operated currently in the
INCT is presented in Fig. 3.

Selected important achievements in free radical
studies

Chemistry

Ionic liquids (IL) are a class of novel solvents with very
interesting properties, and thus can be applied in
catalytic, organic and electrochemical reactions. One
important feature of IL is the possibility of tuning their
physical and chemical properties by varying the nature
of the anion and cation [29]. Moreover, IL are excellent

media for the generation of radical ions since radiolysis
generates high yield of electrons and holes, which are
further trapped by cations and anions [61, 95]. Recent
pulse radiolysis studies have shown that the rate
constants for the ET reactions in IL are generally lower
than those in water and in organic solvents, the
activation parameters are closer to those measured in
aqueous solution than in alcohols, poor correlation of
the rate constants with typical solvent polarity parameters,
however, a reasonable good one with hydrogen-bond
donor acidity and with anion-solvation tendency
parameters [45−48]. The dynamics of very fast processes
such as solvation and diffusion of radicals can be also
studied by mans of pulse radiolysis in order to explore
charge transfer phenomena in IL for a wide range of
compositions and viscosities [96].

One of the classic reaction pathways available to free
radicals is bimolecular homolytic substitution (SH2) [40].
SH2 reactions involving organic molecules with hyper-
valent atoms have been studied extensively in the gas
phase. On the other hand, in solution, SH2 reactions
with the simplest free radical containing nucleus, •H
atom, are almost nonexistent. Pulse radiolysis studies
with time-resolved ESR detection of aqueous solutions
containing α-(methylthio)acetamide (H3C-S-CH2-
C(=O)NH2) prove that SH2 of the acetamide radical
fragment (•CH2-C(=O)NH2) by an H atom is the most
likely reaction pathway. It is driven by the relatively
strong S-H bond formation while only breaking a weaker
C-S bond [98].

Recent investigations of free radical chemistry in
supercritical fluids (SCF) have shown that physical and
chemical properties of free radicals are extremely useful
as mechanistic probes of SCF solvation and solvent
effects. SCF viscosity is one of the bulk physical
properties that may be continously tuned with changes
in temperature and pressure. Three general categories
of free radical reactivity have been considered: (i)
diffusion-controlled reactions, (ii) solvent cage effects
and (iii) activated processes [28]. SCF have also been
exploited for environmental remediation purposes.
Moreover, super-critical-water-cooled reactor is a prime
candidate for developing a new generation of reactors
because of the increased thermal efficiency. Therefore,
from both technological and scientific perspectives

Fig. 2. General view of the measurement room (left) and the operating room (right).
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supercritical water provides a convenient medium for
altering systematically water properties important in
radiolysis (dielectric constants, solvent structure, and
dissociation of water) as a function of density without
changing phase [41]. In recent three years, a series of

papers have been published that addressed spectral,
thermodynamic and kinetic properties of hydrated
electrons and hydrogen atoms formed during radiolysis
of water at supercritical temperatures and pressures [7,
30, 62, 63].

Fig. 3. Design of the experimental control functions (computer and control circuits).
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Biology

The potential role of pulse radiolysis for studying
biological redox processes, particularly of macro-
molecules, has been recognized rather early. Initially,
pulse radiolysis was employed for investigating
radiation-induced damage in peptides, proteins, lipids,
sugars, nucleobases (pyrimidines and purines), nucleo-
sides, and nucleotides, poly-U and poly-A, and DNA
oligomers [84, 88]. In most cases, pulse radiolysis
method has been valuable in identification of radicals,
establishing their structures and exploring their reactiv-
ities. One of the recent results concerns •OH-induced
oxidation of glycine, the simplest amino acid. Two main
radical products +H2N

•-CH2-CO2
•− and aminyl radicals

HN•-CH2-CO2
− have been identified and their subsequent

reaction pathways including decarboxylation with
parallel formation of •CH2NH2 [23] and β-fragmenta-
tion into the respective imine and CO2

•− respectively [21]
have been characterized by means of pulse radiolysis.

Long range electron transfer (LRET) in biological
systems (synthetic peptides, proteins and DNA)
constitutes a worthwhile challenge to radiation
chemistry [12, 36, 54, 66, 72, 91]. Most of these ET
processes proceed on ground-state potential energy
surfaces, making pulse radiolysis an effective and truly
unique tool for these studies. The typical LRET pulse
radiolysis experiment begins with the rapid selective
oxidation or reduction of one redox site on a macro-
molecule (formation of the donor-acceptor complex)
followed by the intra-molecular ET. The advantage of
pulse radiolysis is that using either an oxidizing or
a reducing radical can generate the donor-acceptor
complex. For the very rapid LRET reactions limitation
of the technique is the pseudo-first order reaction of
the formation of the donor-acceptor complex. In a series
of elegant experiments, Isied, Wishart and coworkers
examined the role of the distance, standard free energy
change, and reorganization energy by studying electron
transfer across polypeptides between metal binuclear
complexes (Ru, Co, Os) [52−54]. Influence of secondary
structural features of the peptide bridge has been
probed by applying flexible oligoglycine bridges,
conformationally more rigid oligoproline bridges and
helical bridges. Intramolecular ET involving radicals
located on the side chains of aromatic (tryptophan,
tyrosine, histidine) and sulfur (methionine, cysteine)
have been extensively in several laboratories. Pulse
radiolysis studies of simple model synthetic peptides
with flexible and rigid oligopeptides including helical
bridges have demonstrated radical transformations:
Trp/N•  → Tyr/O•  [15, 17, 18, 33, 35, 36, 60, 78],
Met/S∴ Br → Tyr/O• [20, 76], Met/S∴ Br → Trp/N• [19],
CysS•  → Tyr/O•  [77], and His/N+•  → Tyr/O•  [86].
Elaboration of LRET mechanism by resolving the
parameters that determine specific rates of LRET has
stimulated pulse radiolysis studies in proteins. Examples
include generation of metastable stable electron donor
and acceptor complexes in (i) native and mutant
proteins [16, 76, 85], (ii) proteins with the directed
single-site specific mutations [38, 39], (iii) native and
mutant multi-site redox proteins [59], (iv) proteins with
the site specific modification with transition metal

complexes covalently attached to a specific surface
aminoacid residues [68] or with site specific modifi-
cations of tyrosine residues [44].

The reactions of superoxide radical anions (O2
•−)

with sulfide radical cation complexes might represent
an important and efficient reaction pathway for the
formation of sulfoxides in peptides and proteins
containing methionine residues. Absolute rate constants
for two sulfide radical cation complexes (S∴ S)+ and
(S∴ N)+ with O2

•− were measured using pulse radiolysis
[22]. The rate constant for the reaction of O2

•− with the
(S∴ N)+ complex was found to be ca. 3-fold slower as
compared to that of the reaction with the (S∴ S)+

complex. This drop in reactivity may, in part, reflect
the lower probability of O2

•− to encounter S atom in the
(S∴ N)+ complex as compared to the symmetrical
(S∴ S)+ complex. It is important to note that the
reactions of O2

•−  with the sulfide radical cation
complexes proceed 2.5 to 8-fold faster than the reaction
of O2

•− with superoxide dismutase. From a biological
point of view, it means that sulfide radical cation-O2

•−

reactions might represent a potential source for sulfoxide
formation when system is exposed to high concentra-
tions of reactive oxygen species.

Medicine

The pathogenesis of Alzheimer’s disease is strongly
associated with the formation and deposition of
β-amyloid peptide (β-AP) in the brain. This peptide
contains a methionine (Met35) residue in the C-terminal
domain, which is important for its neurotoxicity and its
propensity to reduce transition metals (CuII) and to
form reactive oxygen species [24, 74]. Stoichiometrically,
the reduction of CuII to CuI requires the one-electron
oxidation of Met to a Met radical cation (MetS+•) [80,
81]. Neighboring group effects play a significant role in
product formation [75, 83]. In order to define the
potential reactions of MetS+• in β-AP, pulse radiolysis
studies with UV/Vis spectrophotometrical and
conductometric detection have been performed in small
model peptides, N-Ac-Gly-(Gly)n-1-Met-(Gly)n [82].
They show for the first time that (i) MetS+• in peptides
can be stabilized through bond formation with either
the oxygen or the nitrogen atoms of adjacent peptide
bonds; (ii) the formation of transients with sulfur-
oxygen bonds is kinetically preferred, but on longer time
scales transients with sulfur-oxygen bonds convert into
transients with sulfur-nitrogen bonds in a pH dependent
manner; (iii) ultimately transients with sulfur-nitrogen
bonds transform intramolecularly into carbon-centered
radicals located on the αC moiety of the peptide
backbone. Another type of C-centered radicals, located
in the side chain of Met residue, could be formed via
deprotonation of MetS+•. Carbon-centered radicals are
precursors for peroxyl radicals that might be involved
in chain reactions of peptide and/or protein oxidation.

It has been recently shown that Met35 is rapidly
oxidized to methionine sulfoxide on the addition of CuII

to the β-AP(1-39) solution. In the structure of β-AP,
Met35S+• formation may be facilitated by a preexisting
close sulfur-oxygen (S-O) interaction between the Met35
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sulfur and the carbonyl oxygen of the peptide bond
C-terminal to Ile31 that might lower 1e reduction
potential of MetS+•/Met couple. One-electron oxidation
of β-AP(1-40) using azide radicals (•N3) produced by
pulse radiolysis have shown that Met35 is the target
in β-AP(1-40) oxidation. Conversely, the oxidation of
β-AP(40-1) with a reversed sequence of aminoacids
have shown that Tyr10 is the target of •N3 radicals [56].
Thermodynamic considerations indicate that •N3 should
not oxidized Met residues unless the one-electron
reduction potential of Met is lowered because of
favorable environment. These observations are the first
experimental evidences that: (i) Met35 in β-AP(1-40) is
more easily oxidized than in other peptides or proteins,
(ii) a change in a primary sequence affects drastically
one-electron reduction potential of Met, even in small
peptides. Such observtions seems to be indeed relevant
to explain specificity of the β-AP in the development
of Alzheimer’s disease.

The pathogenesis of another well-known neuro-
degenerative disease (Jacob-Creutzfeld’s) seems to be
strongly linked to the presence of prion proteins in the
brain. These macromolecules contain multiple Met
residues [99]. The interaction with particular protein
domains involving nucleophilic functionalities in side
chains of aminoacids residues (Asp, Glu, Lys, Val, Thr),
thioether moiety (from Met) or in peptide bonds
present in the vicinity could be vital in stabilizing
MetS+• . Intramolecular stabilization of MetS+•  as
[>S∴ S<]+ complexes has been already characterized
by means of pulse radiolysis in linear oligopeptides
containing multiple methionine residues [14]. Since
weak intramolecular non-bonded S••• O and S••• N
interactions have been recently suggested in proteins
[55], stabilization of MetS+• through formation of S∴ N
and/or S∴ O-bonded radicals might potentially
accelerate oxidation processes in proteins. The first
experimental evidence for the formation of MetS+•

which complex to adjacent amide groups was obtained
during one-electron oxidation of calmodulin (CaM-Ca4,
wild type), studied on the microsecond time domain by
pulse radiolysis [69]. The structure of CaM-Ca4 reveals
that all Met sulfur atoms are located in close vicinity to
at least one peptide bond amide and/or carbonyl
function. Stabilization of MetS+• by peptide bonds
might be a general phenomenon in proteins.

Future perspectives

Topics

The number of scientific topics for applying radiation
chemistry in various fields of physics, chemistry, biology,
and medicine is very large. There is neither need nor
possibility addressing them all in this article. Few
selected examples below will only illustrate potential
research opportunities, and new challenges and needs
in the field. Electron driven processes in aqueous
environment are important for the understanding of
the impact of radiation exposure on biological systems
and advancing the fields of nuclear medicine and
radiation therapy. An understanding of relaxation

and reaction processes occurring under highly non-
equilibrium conditions is needed. This might be
essential in all aspects of nuclear energy production.
Supra-molecular chemistry is a rapidly expanding area
and can also benefit from the work of radiation chemists.
Important future applications of radiation chemistry
include electron transfer processes through unusual
media such as membranes, reactive solvents, and
molecular bridges. Radiation chemical methods can
implement free-radical based methods for organic
synthesis. Radiation-initiated living radical poly-
merization that provides new strategies for the design
of block copolymeric materials is one of technologically
significant applications. Heterogeneous systems
involving constrained environments are of increasing
importance; metal and semiconductor nanoparticles,
microporous and mesoporous materials, microelectronics
material are just few examples. Environmental
remediation using radiation chemistry is one of the most
promising Advanced Oxidation Processes (AOP).
Understanding of the basic mechanisms of AOP will
allow predicting, optimizing and controlling of the
technological processes in heterogeneous environ-
mental systems.

Instrumentation

There is also a strong need to develop experimental
capabilities for pulse radiolysis to push the forefront of
radiation research. This involves RF photocathode
electron gun based linear accelerators, which allow for
synchronization of the electron pulse and a femtosecond
light pulse [93]. Recent advances in accelerator
technology are enabling generation of subpicosecond
electron pulses. The next generation of time-resolved
radiolysis might be accomplished without conventional
accelerators. A novel source for radiolysis such as table
top laser generation of electron beams is just one of
the examples. Efforts should be put into developing new
detection methods with IR, Raman, neutron and
X-ray scattering, as examples.

The state of the art and future scientific topics and
advances in the field of radiation chemistry were the
issues of two workshops organized by the Division of
Chemical Sciences of the US DOE in Chesterton,
Indiana on April 19−22, 1998 [Research needs and
opportunities on radiation chemistry workshop, US DOE
Final Report], and in Richland, WA on September
26−28, 2002 [41]. Recently, the current and new research
activities that have been undertaken by radiation
chemists in Poland have been also reviewed [13].
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