PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of ionizing radiation to environment protection

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the Jubilee Symposium for the 50th anniversary of the foundation of the Institute of Nuclear Research "Atomic Science in the XXI Century" June 16, 2005, Warsaw, Poland
Języki publikacji
EN
Abstrakty
EN
Radiation technology may contribute to the environmental protection to a great extent. Electron beam industrial installations for flue gases containing SOx and NOx treatment have been already built in China and Poland. The same technology for high sulphur and high humidity off-gases (low quality lignite) has been successfully tested in an industrial pilot plant in Bulgaria. Pilot plant tests performed in Japan have illustrated that by applying electron beam for municipal waste incinerator off-gases treatment the concentration of dioxins can be reduced by 80%, other persistent organic pollutants can be depredated as well. The positive results of electron beam wastewater treatment are the basis for a full-scale industrial plant being built in the South Korea. A pilot gamma plant for sludge irradiation producing a high grade organic fertilizer is in operation in India. All these achievements are reported in this paper.
Słowa kluczowe
Czasopismo
Rocznik
Strony
17--24
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Faculty of Process and Chemical Engineering, Warsaw University of Technology, 1 L. Waryńskiego Str., 00-645 Warsaw, Poland and Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., Warsaw, Poland, Tel.: +48 22-504 1058, Fax: +48 22-8111532, a.chmielewski@ichtj.waw.pl
Bibliografia
  • 1. Bumsoo H, Jaein K, Jinkuy K et al. (2002) Combined electron-beam and biological treatment of dyeing complex wastewater. Pilot plant experiments. Radiat Phys Chem 64;1:53−59
  • 2. Chaychian M, Al-Sheikhly M, Silverman J, McLaughlin WL (1998) The mechanisms of removal of heavy metals from water by ionizing radiation. Radiat Phys Chem 53;2:145−150
  • 3. Chmielewski AG (1995) Technological development of eb flue gas treatment based on physics and chemistry of the process. Radiat Phys Chem 46:1057−1062
  • 4. Chmielewski AG (2002) Environmental effects of fossil fuel combustion. In: Kubota SH, Magara Y (eds) Encyclopedia of life support systems (EOLSS). EOLSS Publishers, Oxford, UK, www.eolss.net
  • 5. Chmielewski AG, Licki J, Pawelec A, Tymiński B, Zimek Z (2004) Operational experience of the industrial plant for electron beam flue gas treatment. Radiat Phys Chem 71;1-2:439−442
  • 6. Chmielewski AG, Ostapczuk A, Zimek Z, Licki J, Kubica K (2002) Reduction of VOCs in flue gas from coal combustion by electron beam treatment. Radiat Phys Chem 63;3-6:653−655
  • 7. Chmielewski AG, Tymiński B, Dobrowolski A et al. (1998) Influence of gas flow patterns on NOx removal efficiency. Radiat Phys Chem 52;1-6:339−343
  • 8. Chmielewski AG, Tymiński B, Licki J, Iller E, Zimek Z, Radzio B (1995) Pilot plant for flue gas treatmentcontinuous operation tests. Radiat Phys Chem 46:1067−1070
  • 9. Chmielewski AG, Zimek Z, Bryl-Sandelewska T, Kosmal W, Kalisz L, Kaźmierczuk M (1995) Disinfection of municipal sewage sludges in installation equipped with electron accelerator. Radiat Phys Chem 46:1071−1074
  • 10. Cooper WJ, Curry RD, O’Shea KE (eds) (1998) Environmental applications of ionizing radiation. John Wiley & Sons, Inc., New York
  • 11. Desrosiers MF (2004) Irradiation applications for homeland security. Radiat Phys Chem 71;1-2:479−482
  • 12. Doi Y, Nakanishi I, Konno Y (2000) Operational experience of a commercial scale plant of electron beam purification of flue gas. Radiat Phys Chem 57;3-6:495−499
  • 13. Environmental and health aspects of water treatment and supply (2002) In: Kubota SH, Magara Y (eds) Encyclopedia of life support systems (EOLSS). EOLSS Publishers, Oxford, UK, www.eolss.net
  • 14. Frank NW (1995) Introduction and historical review of electron beam processing for environmental pollution control. Radiat Phys Chem 45;6:989−1002
  • 15. Gehringer P, Eschweiler H (2004) Radiation processing of secondary effluents from municipal wastewater treatment plants. In: Proc of Int Symp on Advanced Oxidation Technologies, 18 June 2004, Warsaw, Poland, pp 25−28
  • 16. Gehringer P, Eschweiler H (2002) The dose rate effect with radiation processing of water – an interpretative approach. Radiat Phys Chem 65:379−386
  • 17. Getoff N (1996) Radiation-induced degradation of water pollutants − state of the art. Radiat Phys Chem 47;4:581−593
  • 18. Hashimoto S, Nishimura K, Machi S (1988) Economic feasibility of irradiation-composting plant of sewage sludge. Int J Radiat Appl Instrum C: Radiat Phys Chem 31;1-3:109−114
  • 19. Hilarides RJ, Gray KA, Hakoda T, Guzzetta J, Cortellucci N, Sommer C(1996) Feasibility, system design, and economic evaluation of radiolytic degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin on soil. Water Environ Res 68;2:178−187
  • 20. Hirota K, Hakoda T, Taguchi M, Takigami M, Kim H, Kojima T (2003) Application of electron beam for the reduction of PCDD/F emission from municipal solid waste incinerators. Environ Sci Technol 37;14:3164−3170
  • 21. Hirota K, Tokunaga O, Miyata T et al. (1995) Pilot-scale test for electron beam purification of flue gas from a municipal waste incinerator with slaked-lime. Radiat Phys Chem 46;4-6:1089−1092
  • 22. Kurucz CN, Waite TD, Cooper WJ (1995) The Miami Electron Beam Research Facility: a large scale wastewater treatment application. Radiat Phys Chem 45;2:299−308
  • 23. Machi S (1983) Radiation technology for environmental conservation. Radiat Phys Chem 22;1-2:91−97
  • 24. Mätzing H, Namba H, Tokunaga O (1993) Kinetics of SO2 removal from flue gas by electron beam technique. Radiat Phys Chem 42;4-6:673−677
  • 25. Mätzing H, Paur HR (1992) Chemical mechanisms and process parameters of flue gas cleaning by electron beam. In: Nriagu JO (ed.) Gaseous pollutants: characterization and cycling. Wiley, New York, pp 307–331
  • 26. Miyata T, Kondoh M et al. (1990) High energy electron disinfection of sewage wastewater in flow systems. Int J Radiat Appl Instrum C: Radiat Phys Chem 35;1-3:440−444
  • 27. Namba H, Tokunaga O, Hashimoto S et al. (1995) Pilotscale test for electron beam purification of flue gas from coal-combustion boiler. Radiat Phys Chem 46;4-6:1103−1106
  • 28. Paur H-R, Baumann W, Mätzing H, Jay K (1998) Electron beam induced decomposition of chlorinated aromatic compounds in waste incinerator off gas. Radiat Phys Chem 52;1-6:355−359
  • 29. Person JC, Ham DO (1988) Removal of SO2 and NOx from stack gases by electron beam irradiation. Radiat Phys Chem 31:1–8
  • 30. Pikaev AK (2002) New data on electron-beam purification of wastewater. Radiat Phys Chem 65;4-5:515−526
  • 31. Proceedings of 15th Symposium on Environmental Protection and Safety, October 17, 2003, Seoul, South Korea
  • 32. Radoiu MT, Martin DI, Calinescu I (2003) Emission control of SOx and NOx by irradiation methods. J Hazard Mater B 97:145−158
  • 33. Rukes B, Taud R (2004) Status and perspectives of fossil power generation. Energy 29;12-15:1853−1874
  • 34. Sarma KSS (2004) Prospects and development of radiation technologies in developing countries. In: Emerging applications of radiation processing. IAEATECDOC-1386. IAEA, Vienna, pp 14−20
  • 35. Srivastava RK, Jozewicz W, Singer C (2001) SO2 scrubbing technologies: a review. Environ Prog 20:219–227
  • 36. Tokunaga O, Suzuki N (1984) Radiation chemical reactions in NOx and SO2 removals from flue gas. Radiat Phys Chem 24;1:145−165
  • 37. Wittig S, Spiegel G, Platzer K-H, Willibald U (1988) Simultane Rauchgasreingung durch Elektronenstrahl. KfK-PEF 45. Kernforschungszentrum, Karlsruhe
  • 38. Woods RJ, Pikaev AK (1994) Applied radiation chemistry. John Wiley & Sons, New York
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.