PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Radiation chemistry in exploration of Mars

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the XIII Scientific Meeting of the Polish Radiation Research Society, Memorial to Maria Skłodowska-Curie, 13-16 September 2004, Łódź, Poland
Języki publikacji
EN
Abstrakty
EN
Problems of exploration of Mars are seldom connected with radiation research. Improvements in such approach, more and more visible, are reported in this paper, written by the present author working on prebiotic chemistry and origins of life on Earth. Objects on Mars subjected to radiation are very different from those on Earth. Density of the Martian atmosphere is by two orders smaller than over Earth and does not protect the surface of Mars from ionizing radiations, contrary to the case of Earth, shielded by the equivalent of ca. 3 meters of concrete. High energy protons from the Sun are diverted magnetically around Earth, and Mars is deprived of that protection. The radiolysis of martian "air" (95.3% of carbon dioxide) starts with the formation of CO2 +, whereas the primary product over Earth is N2 + ionradical. The lack of water vapor over Mars prevents the formation of many secondary products. The important feature of Martian regolith is the possibility of the presence of hydrated minerals, which could have been formed milliards years ago, when (probably) water was present on Mars. The interface of the atmosphere and the regolith can be the site of many chemical reactions, induced also by intensive UV, which includes part of the vacuum UV. Minerals like sodalite, discovered on Mars can contribute as reagents in many reactions. Conclusions are dedicated to questions of the live organisms connected with exploration of Mars; from microorganisms, comparatively resistant to ionizing radiation, to human beings, considered not to be fit to manned flight, survival on Mars and return to Earth. Pharmaceuticals proposed as radiobiological protection cannot improve the situation. Exploration over the distance of millions of kilometers performed successfully without presence of man, withstands more easily the presence of ionizing radiation.
Czasopismo
Rocznik
Strony
59--63
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Department of Radiation Chemistry and Technology, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warszawa, Poland, Tel.: +48 22-8112347, Fax: +48 22-8111917, zagorski@ichtj.waw.pl
Bibliografia
  • 1. Atwell W, Saganti P, Cucinotta FA et al. (2004) A space radiation shielding model of the Martian Radiation Environment Experiment (MARIE). Adv Space Res 33:2219−2221
  • 2. Battaglia R, Palomba E, Palumbo P et al. (2004) Development of a micro-balance system for dust and water vapour detection in the Mars atmosphere. Adv Space Res 33:2258−2262
  • 3. Bish DL, Carey JW, Vaniman DT et al. (2003) Stability of hydrous minerals on the martian surface. Icarus 164:96−103
  • 4. Cabane M, Coll P, Szopa C et al. (2004) Did life exist on Mars? Search for organic and inorganic signatures, one of the goals for “SAM” (sample analysis at Mars). Adv Space Res 33:2240−2245
  • 5. Catling DC, Moore JM (2003)The nature of coarsegrained crystalline hematite and its implications for the early environment of Mars. Icarus 165:277−300
  • 6. Clark BC (2001) Planetary interchange of bioactive material: Probability factors and implications. Origins Life Evol Biosph 31:185−197
  • 7. Cleghorn TF, Saganti PB, Zeitlin CJ et al. (2004) Solar particle events observed at Mars: dosimetry measurements and model calculations. Adv Space Res 33:2215−2218
  • 8. Ehrenfreud P, Charnley SB (2000) Organic molecules in the interstellar medium comets and meteorites: A voyage Radiation chemistry in exploration of Mars S63 from dark clouds to the early Earth. Ann Rev Astronom Astrophys 38:427−483
  • 9. Fairen AG (2004) Age and origin of the lowlands of Mars. Icarus 168:277−284
  • 10. Głuszewski W, Zagórski ZP (2005) Determination of radiolytic molecular hydrogen on line with EB irradiation. J Radioanal Nucl Chem (in print)
  • 11. Horneck G (1993) Response of Bacillus subtilis spores to space environment: results from experiments in space. Origins Life Evol Biosph 23:37−52
  • 12. Horneck G, Bucker H, Reitz G (1994) Long term survival of bacterial spores in space. Adv Space Res 14:41−45
  • 13. Horneck G, Rettberg P, Reitz G et al. (2001) Protection of bacterial spores in space: a contribution to the discussion of panspermia. Origins Life Evol Biosph 31:527−547
  • 14. Kennedy AR, Ware JH, Guan J et al. (2004) Selenomethionine protects against adverse biological effects induced by space radiation. Free Radic Biol Med 36:259−266
  • 15. Kim M-H, Thibeault SA, Wilson JW et al. (2000) Development and testing of in situ materials for human exploration of Mars. High Perform Polym12:13−26
  • 16. Krasnopolsky VA, Feldman PD (2002) Far ultraviolet spectrum of Mars. Icarus 160:86−94
  • 17. Kress ME, McKay CP (2004) Formation of methane in comet impacts: Implications for Earth, Mars and Titan. Icarus 168:475−483
  • 18. Lammer H, Lichtenegger HIM, Kolb C et al. (2003) Loss of water from Mars: Implications for the oxidation of the soil. Icarus 165:9−25
  • 19. Lathe R (2004) Fast tidal cycling and origin of life. Icarus 168:18−22
  • 20. Lee KT, Cleghorn T, Cucinotta F et al. (2004) Heavy ion observations by MARIE in cruise phase and Mars orbit. Adv Space Res 33:2211−2214
  • 21. Noe Dobrea EZ, Bell III JF, Wolff MJ et al.(2003) H2Oand OH-bearing minerals in the martian regolith: analysis of 1997 observations from HST/NICMOS. Icarus 166:1−20
  • 22. Owen T (1992) The composition and early history of the atmosphere of Mars. In: Kieffer HH, Jakosky BM, Snyder CW, Mathews MS (eds) Mars. University of Arizona Press, Tucson, AZ, pp 818−834
  • 23. Palme H, Jones A (2003) Chapter 1.03: Solar system abundances of the elements. In: Treatise on geochemistry, vol. 1. Meteorites, comets and planets. Elsevier, New York, pp 41−61
  • 24. Raymond SN, Quinn T, Lunine JI (2004) Making other earth: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168:1−17
  • 25. Ruff SW (2004) Spectral evidence for zeolite in the dust on Mars. Icarus 168:131−143
  • 26. Rummel JD (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. Proc Natl Acad Sci 98:2128−2131
  • 27. Schuerger AC, Mancinelli RL, Kern RG et al.(2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165:253−276
  • 28. Tehei M, Franzetti B, Maurel M-C et al. (2002) The search for traces of life: the protective effect of salt on biological macromolecules. Extremophiles 6:427−430
  • 29. Venkatesvaran K, Satomi M, Chung S et al. (2001) Molecular microbial diversity of a spacecraft assembly facility. System Appl Microbiol 24:311−320
  • 30. Weiss JF, Landauer MR (2003) Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology 189:1−20
  • 31. Wong AS, Atreya SK, Formisano V et al. (2004) Atmospheric photochemistry above possible martian hot spots. Adv Space Res 33:2236−2239
  • 32. Zagórski ZP (2001) Radiation chemistry and origins of life on Earth. Wiadomości Chemiczne 55:965−985 (in Polish)
  • 33. Zagórski ZP (2001) Radiation resistance of concrete. INCT Annual Report 2000:39−40
  • 34. Zagórski ZP (2003) Radiation chemistry and origins of life on Earth. Radiat Phys Chem 66:329−334
  • 35. Zagórski ZP (2003a) Panspermia. Postępy Techniki Jądrowej 46;2:42−52 (in Polish)
  • 36. Zagórski ZP, Głuszewski W (2004) Irreversible radiolytic dehydrogenation of polymers: the key to recognition of mechanisms. INCT Annual Report 2003:40−42
  • 37. Zagórski ZP, Sehested K, Nielsen SO (1971) Pulse radiolysis of aqueous alkaline sulfite solutions. J Phys Chem 75:3510−3517
  • 38. Zeitlin C, Cleghorn T, Cucinotta F et al. (2004) Overview of the Martian radiation environment experiment. Adv Space Res 33:2204−2210
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.