PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EPR study of highly stable methyl radicals trapped in synthetic H-rho zeolite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the XIII Scientific Meeting of the Polish Radiation Research Society, Memorial to Maria Skłodowska-Curie, 13-16 September 2004, Łódź, Poland
Języki publikacji
EN
Abstrakty
EN
Methyl radicals generated by ă-irradiation in the proton form of synthetic rho zeolite exposed to CH4 have been investigated by electron paramagnetic resonance (EPR) in the temperature range 110-370 K. Depending on the methane adsorption temperature two EPR spectra of oCH3 radicals were recorded. The isotropic quartet observed after CH4 adsorption at room temperature was assigned to oCH3 radicals freely rotating in the middle of octagonal prism. After adsorption at 413 K, the isotropic quartet is overlapped with the second signal characterized with anisotropy of hyperfine splitting and g-value. It is postulated that anisotropic signal represents the oCH3 radicals located in á-cages and strongly interacting with silicaalumina framework. The mechanisms of radiolytic formation of methyl radicals and the possible stabilization sites are also discussed.
Słowa kluczowe
Czasopismo
Rocznik
Strony
51--54
Opis fizyczny
Bibliogr. 35 poz., rys.
Twórcy
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22-8112347, Fax: +48 22-8111532
autor
  • Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland, Tel.: +48 22-8112347, Fax: +48 22-8111532
autor
  • Department of Physics and Measurements Technology, Linköping University, S-581 83 Linköping, Sweden
autor
  • National Institute for Material Science and Technology (AIST), 1-1 Namiki, Tskuba, Ibaraki 305 0044, Japan
autor
Bibliografia
  • 1. Evleth EM, Kassab E, Sierra LR (1994) Calculation of the exchange mechanism of D2 and CD4 with z zeolite model. J Phys Chem 98:1421−1426
  • 2. Fessenden RW, Schuler RH (1963) Electron spin resonance studies of transient alkyl radicals. J Chem Phys 39:2147−2195
  • 3. Gameson I, Rayment T, Thomas JM, Wright PA (1998) Studies of model zeolitic catalysts: determination of the site of adsorption of methyl chloride sorbed in zeolite rho by powder X-ray diffraction. J Phys Chem 92:988−991
  • 4. Garcia H, Roth HD (2002) Generation and reactions of organic radical cations in zeolites. Chem Rev 102:3947−4007
  • 5. Iwasaki M, Toriyama K, Muto H, Nunome K, Fukaya M (1981) Reaction of thermal hydrogen atoms at cryogenic temperature below 77 K as studied by ESR. 4. Abstraction from C3H8 and /-C4H10 and addition to C2H4 in xenon matrixes. J Phys Chem 85:1326−1332
  • 6. Jen CK, Foner SN, Cochran EL, Bowers VA (1958) Electron spin resonance of atomic and molecular free radicals trapped at liquid helium temperature. Phys Rev 112:1169−1182
  • 7. Joppien GR, Willard JE (1972) Further studies of chemical reactions on γ-irradiated silica gel and porous vycor glass. J Phys Chem 78:3158−3166
  • 8. Kasai PH (1972) Electron spin resonance studies of vinyl, propargyl, and butatrienyl radicals isolated in argon matrixes. J Am Chem Soc 94:5950−5956
  • 9. Kasai PH, Whipple EB (1967) Orientation and motion of vinyl radicals in neon matrices. J Am Chem Soc 89:1033−1034
  • 10. Kramer GJ, van Santen RA, Emeis CA, Nowak AK (1993) Understanding the acid behaviour of zeolites from theory and experiment. Nature 363:529−531
  • 11. McConnell HM, Heller C, Cole T, Fessenden RW (1952) Radiation damage in organic crystals. I. CH(COOH)2 in malonic amid. J Am Chem Soc 82:766−775
  • 12. Morehouse RL, Christiansen JJ, Gordy W (1966) ESR of free radicals trapped in inert matrices at low temperature: CH3, SiH3, GeH3, and SnH3. J Chem Phys 45:1751−1758
  • 13. Robson HE, Shoemaker DP, Ogilvie RE, Manor PC (1973) Synthesis and crystal structure of zeolite Rho-A new zeolite related to Linde type A. Advances in Chemistry Series vol. 121, pp 106−115
  • 14. Shida T, Hamill WH (1966) Molecular ions in radiation chemistry. I. Formation of aromatic-amine cations in CCl4 by resonance charge transfer at 77 K. J Chem Phys 44:2369−2374
  • 15. Shiga T, Lund A (1973) g Factor and hyperfine coupling anisotropy in the electron spin resonance spectra of methyl-, ethyl-, and allyl-type radicals adsorbed on silica gel. J Phys Chem 77:453−455
  • 16. Shiotani M, Yuasa F, Sohma J (1975) Electron spin resonance studies of methyl radicals trapped on 4A type zeolite. J Phys Chem 75:2669−2674
  • 17. Toriyama K, Nunome K, Iwasaki M (1982) Structure and reactions of radical cations of some prototype alkenes in low temperature solids as studied by ESR spectroscopy. J Chem Phys 77:5894−5912
  • 18. Trifunac AD, Picos EA, Werst DW, Eriksson LA (1996) Radical ions of acetylene in ZSM5 zeolites: An EPR and theoretical study. J Phys Chem 100:8408−8417
  • 19. van Ballmoos R (1984) Collection of simulated XRD powder diffraction patterns for zeolites. Butterworth Scientific Limited, Guildford
  • 20. Vollmer JM, Truong TN (2000) Mechanisms of hydrogen exchange of methane with H-zeolite Y: An ab initio embedded cluster study. J Phys Chem B 104:6308−6312
  • 21. Wang T, Williams F (1980) EPR evidence for the formation of the hexamethylethane radical cation by charge transfer in a freon matrix. J Phys Chem 84:3156−3159
  • 22. Yoshizawa K, Shiota Y, Yumura T, Yamabe T (2000) Direct methane-methanol and benzene-phenol conversions on Fe-ZSM-5 zeolite: theoretical predictions on the reaction pathways and energetics J Phys Chem B 104:734−740
  • 23. Zhu Z, Hartmann M, Kevan L (2000) Catalytic conversion of methanol to olefins on SAPO-n (n=11, 34, and 35), CrAPSO-n, and Cr-SAPO-n molecular. SievesChem Mater 12:2781−2787
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.