PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The mechanism and kinetics of ozone formation in a pulse radiolysis study of the Ar-O2 system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the XIII Scientific Meeting of the Polish Radiation Research Society, Memorial to Maria Skłodowska-Curie, 13-16 September 2004, Łódź, Poland
Języki publikacji
EN
Abstrakty
EN
The mechanism and kinetics of O3 formation after an electron pulse have been studied in the Ar-O2 systems by time resolved optical measurements at gamma = 260 nm. The second order rate constant of energy transfer from excited Ar(4s,4p) states to O2 molecules: (1) Ar*,Ar** + O2 → O2* + Ar, was found to be (8.9 ± 2.1) x 10-10 cm3 s-1. It was found also the evidence of the third order process contribution to the energy transfer: (2) Ar*,Ar** + Ar + O2 → products, with the rate constant in the range (1.5-3.7) x 10-29 cm6 s-1. The rate constant of the deactivation of excited ozone molecules by O2 was found to be (5.1 ± 0.6) ´ 10-15 cm3 s-1.
Słowa kluczowe
Czasopismo
Rocznik
Strony
29--33
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Department of Chemistry, University of Podlasie, 54 3 Maja Str., 08-110 Siedlce, Poland, Tel.: +48 25-6431007, Fax: +48 25-6442045
autor
  • Department of Chemistry, University of Podlasie, 54 3 Maja Str., 08-110 Siedlce, Poland, Tel.: +48 25-6431007, Fax: +48 25-6442045
autor
  • Department of Chemistry, University of Podlasie, 54 3 Maja Str., 08-110 Siedlce, Poland, Tel.: +48 25-6431007, Fax: +48 25-6442045
autor
  • Department of Chemistry, University of Podlasie, 54 3 Maja Str., 08-110 Siedlce, Poland, Tel.: +48 25-6431007, Fax: +48 25-6442045
autor
  • Department of Chemistry, University of Podlasie, 54 3 Maja Str., 08-110 Siedlce, Poland, Tel.: +48 25-6431007, Fax: +48 25-6442045
Bibliografia
  • 1. Birot A, Brunet H, Galy J, Millet P (1975) Continuous emission of argon and krypton in the near ultraviolet. J Chem Phys 63:1469−1473
  • 2. Collins CB, Lee FW (1979) Measurement of the rate coefficients for the bimolecular and termolecular deexcitation reactions of helium (23 S) with selected atomic and molecular species. J Phys Chem 70:1275−1285
  • 3. Collins CB, Lee FW, Tepfenhart WM, Stevefelt J (1983) Modelling of ion-molecule reactions at high pressures. J Chem Phys 98:6079−6090
  • 4. DeMore WB, Sander SP, Golden DM et al. (1997) Chemical kinetics and photochemical data for use in stratospheric modelling. JPL Publication, evaluation number 12, 97-4:1
  • 5. Firestone RF, Chen Mon-Chao (1978) Bimolecular and “three-body” quenching of resonance state argon atoms by nitrogen at argon pressures in the 200−700 torr region. J Chem Phys 69:2947−2948
  • 6. Huyton DW, Woodward TW (1970) Ionisation measurements and some ionic reactions in gas phase radiolysis. Radiat Res Rev 2:205−234
  • 7. Jówko A, Kowalczyk J, Wojciechowski K, Foryś M (1996) Collisional quenching of Xe and Kr excited atoms by molecular additives. Radiat Phys Chem 48:481−486
  • 8. Jówko A, Symanowicz M, Bartkiewicz E (1985) The excitation energy transfer processes in the rare gashydrogen chloride systems. Radiat Phys Chem 26:49−52
  • 9. Jówko A, Wnorowski K, Kowalczyk J, Wojciechowski K (2001) Kinetics of the OH radical formation in the pulse radiolysis of Ar-H2O gaseous mixtures. Radiat Phys Chem 61:27−34
  • 10. Klots JH, Velazco JE, Setser DW (1979) Reactive quenching studies of Xe(6s,3 P2) metastable atoms by chlorine containing molecules. J Chem Phys 71:1247−1262
  • 11. Langhoff H (1988) The origin of the third continua emitted by excited rare gases. Opt Comm 68:31−34
  • 12. Piper LG, Velazco JE, Setser DW, Lo G (1979) Reactions between argon and noble gases. J Chem Phys 69:3323−3340
  • 13. Ramirez JE, Bera Ranajit K, Hanrahan RJ (1984) Formation of ground state ozone on pulse radiolysis of oxygen. Radiat Phys Chem 23:685−688
  • 14. Sadeghi N, Setser DW, Francis A, Czarnetzki U, Dobele HF (2001) Quenching rate constants for reactions of Ar(4p’[1/2]0, 4p[1/2]0, 4p[3/2]2, 4p[5/2]2) atoms with 22 reagent gases. J Chem Phys 115:3144−3153
  • 15. Velazco JE, Klots JH, Setser DW (1978) Rate constants and quenching mechanisms for the metastable states of argon, krypton and xenon. J Chem Phys 69:4357−4372
  • 16. Wieme W, Lenaerts J (1981) Excimer formaton in argon, krypton and xenon discharge afterglows between 200 and 400 K. J Chem Phys 74:483−493
  • 17. Wojciechowski K (1998) The mechanism and kinetics of energy transfer processes in Xe-CCl4-M (M = CO, CO2) mixtures irradiated by xenon resonance light. Radiat Phys Chem 53:47−53
  • 18. Wojciechowski K (1998) The mechanism and kinetics of energy transfer processes in the Xe-CCl4-M (M = CH4, C2H2, C2H4, C2H6, C3H6 and C3H8). Radiat Phys Chem 53:37−46
  • 19. Wojciechowski K, Foryś M (1999) The mechanism of three-body process of energy transfer from excited xenon atoms to molecules. Radiat Phys Chem 54:1−10
  • 20. Wojciechowski K, Kowalczyk J, Jówko A (1998) Pulse radiolysis study of energy transfer processes in Xe-M mixtures (M = CH2F2, CHF3, CHF2Cl, CHFCl2 and CF3Cl). Radiat Phys Chem 53:417−424
  • 21. Wojciechowski K, Rosa M, Jówko A, Foryś M (1993) Energy transfer processes in the xenon sensitized photolysis of hydrogen chloride and carbon tetrachloride. Nukleonika 38;2:31−47
  • 22. Wojciechowski K, Rosa M, Symanowicz M, Jówko A, Foryś M (1994) Energy transfer processes in the xenon sensitised photolysis of SOCl2, S2Cl2 and PCl3. Nukleonika 39;4:35−50
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.