Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference Mechanism of Radionuclides and Heavy Metals Bioaccumulation and their Relevance for Biomonitoring, Warsaw, Poland, October 7-8, 2005
Języki publikacji
Abstrakty
In order to explain influence of common cations (K+, Na+ and Ca2+) on uptake and transport of caesium in macromycetes, a culture of a model mushroom species, king oyster mushroom (Pleurotus eryngii) was set up. Fructification in a growing chamber with stabilised temperature (18°C) and humidity (80%) was preceded by mycelial colonization of the sterilized barley seed medium packed into autoclavable plastic containers. Aliquots of test solutions, containing 0.1 mM caesium chloride carrier traced with 137CsCl and the selected ions, were dosed into the interphase between the container wall and the spawn block. This allowed to study influence of the added ions on the uptake of caesium in a way unaffected by the used growing medium, e.g. soil, as it was in the previous studies. The experiments demonstrated that the major amount of radiocaesium was biologically bound and accumulated in the fruitbodies to a higher extent (56 69%) than in the mycelium. Addition of 10 mM Na+ decreased the transfer factor for caesium (cap/soil) while addition of Ca2+ caused an increase of this value. The effect of potassium addition depended on its concentration in the solution. Also the Cs/K ratio in caps was significantly influenced by addition of 10 and 100 mM Na+. However, the Cs/K ratio in stipes was affected by Ca2+. Discrimination factors, calculated from specific activities (137Cs/40K cap d.w.)/(137Cs/40K stipe d.w.), were also changed after addition of the studied cations. Since the activities of caesium measured in the fruitbodies of single fungal species strongly depend on the content of co-supplied ions, further proofs should be achieved before using mushrooms as bioindicators of the soil caesium contamination.
Czasopismo
Rocznik
Tom
Strony
9--13
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
- Isotope Laboratory, Faculty of Biology, Warsaw University, 1 Miecznikowa Str., PL-02-096 Warsaw, Poland, Tel.: +48 22-5542300, Fax: +48 22-5541106
autor
- Departamento de Biología Vegetal, Facultad de Biología, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Crtra. Madrid-Barcelona, Km. 33,600, Spain
autor
- Isotope Laboratory, Faculty of Biology, Warsaw University, 1 Miecznikowa Str., PL-02-096 Warsaw, Poland, Tel.: +48 22-5542300, Fax: +48 22-5541106
autor
- Isotope Laboratory, Faculty of Biology, Warsaw University, 1 Miecznikowa Str., PL-02-096 Warsaw, Poland, Tel.: +48 22-5542300, Fax: +48 22-5541106
autor
- Isotope Laboratory, Faculty of Biology, Warsaw University, 1 Miecznikowa Str., PL-02-096 Warsaw, Poland, Tel.: +48 22-5542300, Fax: +48 22-5541106
Bibliografia
- 1. Agrahar-Murugkar D, Subbulakshmi G (2005) Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chem 89:599–603
- 2. Baeza A, Guillén J, Paniagua JM et al. (2000) Radiocaesium and radiostrontium uptake by fruit bodies of Pleurotus eryngii via mycelium, soil and aerial absorption. Appl Radiat Isot 53:455–462
- 3. Brunnert H, Zadražil F (1981) Translation of cadmium and mercury into the fruiting bodies of Agrocybe aegerita in a model system using agar platelets as substrate. Eur J Appl Microbiol 12:179–182
- 4. Bystrzejewska-Piotrowska G, Urban PL, Stęborowski R (2003) Discrimination between 137Cs and 40K in the fruiting body of wild edible mushrooms. Nukleonika 48:155–157
- 5. Gadd GM (ed.) (2001) Fungi in bioremediation. British Mycological Society, Cambridge, UK
- 6. Heinrich G (1993) Distribution of radiocesium in the different parts of mushrooms. J Environ Radioact 18:229–245
- 7. Justo MB, Guzman MGA, de Mejia EG, Diaz CLG (1998) Chemical composition of three Mexican strains of oyster mushroom (Pleurotus ostreatus). Archivos Latinoamericanos de Nutricion 48:359–363
- 8. Kalaè P (2001) A review of edible mushroom radioactivity. Food Chem 75:29–35
- 9. Kuwahara C, Watanuki T, Matsushita K, Nishina M, Sugijama H (1998) Studies on uptake of cesium by mycelium of the mushroom (Pleurotus ostreatus) by 133Cs-NMR. J Radioanal Nucl Chem 235:191–194
- 10. Manjón JL, Urban PL, Bystrzejewska-Piotrowska G (2004) A simple and quick model to study uptake and transfer of radionuclides and heavy metals from mycelium to the fruitbody of saprophytic edible fungi. Nukleonika 49;S1:S21–S24
- 11. Mietelski JW, Jasińska M, Kubica B, Kozak K, Macharski P (1994) Radioactive contamination of Polish mushrooms. Sci Total Environ 157:217–226
- 12. Olsen RA (1994) The transfer of radiocaesium from soil to plant and fungi in semicultural ecosystems. In: Dahlgaard H (ed.) Nordic radioecology – the transfer of radionuclides through Nordic ecosystems to man. Elsevier Science, Amsterdam
- 13. Rodriguez-Navarro A (2000) Potassium transport in fungi and plants. BBA-Rev Biomembranes 1469:1–30
- 14. Terada H, Shibata H, Kato F, Sugiyama H (1998) Influence of alkali elements on the accumulation of radiocesium by mushrooms. J Radioanal Nucl Chem 235:195–200
- 15. van Elteren JT, Woroniecka UD, Kroon KJ (1998) Accumulation and distribution of selenium and cesium in the cultivated mushroom Agaricus bisporus – a radiotracer-aided study. Chemosphere 36:1787–1798
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0003