PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short review: the mechanisms of radiocaesium uptake by Arabidopsis roots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the International Conference Mechanism of Radionuclides and Heavy Metals Bioaccumulation and their Relevance for Biomonitoring, Warsaw, Poland, October 7-8, 2005
Języki publikacji
EN
Abstrakty
EN
Both theoretical models and pharmacological dissection suggest that Cs+ influx to arabidopsis root cells occurs through voltage-insensitive cation channels (VICCs), encoded by members of the AtCNGC and AtGLR gene families, and 'high-affinity' K+/H+ symporters (KUPs), encoded by members of the AtKUP/AtHAK gene family. When arabidopsis have sufficient K, it is observed that VICCs mediate most Cs+ influx to root cells. However, KUPs contribute more to Cs+ influx in roots of K-starved plants. This phenomenon has been attributed to an increased expression of AtHAK5 in roots of K-starved plants. Curiously, although arabidopsis mutants lacking some AtCNGCs show reduced Cs accumulation, mutants lacking other AtCNGCs accumulate more Cs in their shoot than wildtype plants. It is hypothesised, therefore, that the expression of genes encoding diverse K+-transporters might be altered to compensate for the absence of AtCNGCs that contribute significantly to cellular K homeostasis. Increased Cs+ influx and accumulation could then be explained if the lack of an AtCNGC caused a physiological K-deficiency that increased the expression of AtKUPs. Such observations imply that the consequences of a simple genetic manipulation, such as the mis-expression of a AtCNGC gene, on Cs+ influx and accumulation might not be predicted a priori. Finally, since AtCGNCs, AtGLRs and AtKUPs have contrasting Cs+:K+ selectivities, and their relative expression is determined by diverse environmental variables, both the Cs:K ratio in plant tissues and the absolute rates of Cs+ influx and accumulation will depend critically on environmental conditions. This will impact on strategies for phytoremediation and/or the development of 'safer' crops for radiocaesium-contaminated land.
Słowa kluczowe
Czasopismo
Rocznik
Strony
3--8
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK, Tel.: +44 (0) 24765 75096, Fax: +44 (0) 2476 574500
autor
  • Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
autor
  • Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK, Tel.: +44 (0) 24765 75096, Fax: +44 (0) 2476 574500
Bibliografia
  • 1. Ahn SJ, Shin R, Schachtman DP (2004) Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 134:1135−1145
  • 2. Alexakhin RM (1993) Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident. Sci Total Environ 137:9−20
  • 3. Andersen AJ (1967) Investigations on the plant uptake of fission products from contaminated soils. I. Influence of plant species and soil types on the uptake of radioactive strontium and caesium. Risø Report No. 170. Risø, Denmark
  • 4. Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signalling. Plant Physiol 136:2556−2576
  • 5. Banuelos MA, Garciadeblas B, Cubero B, RodríguezNavarro A (2002) Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 130:784−795
  • 6. Beresford NA, Voigt G, Wright SM et al. (2001) Selfhelp countermeasure strategies for populations living within contaminated areas of Belarus, Russia and Ukraine. J Environ Radioact 56:215−239
  • 7. Broadley MR, Escobar-Gutiérrez AJ, Bowen HC, Willey NJ, White PJ (2001) Influx and accumulation of Cs+ by the akt1 mutant of Arabidopsis thaliana (L.) Heynh. lacking a dominant K+ transport system. J Exp Bot 52:839−844
  • 8. Broadley MR, Willey NJ, Mead A (1999) A method to assess taxonomic variation in shoot caesium concentration among flowering plants. Environ Pollut 106:341−349
  • 9. Buysse J, Van den Brande K, Merckx R (1995) The distribution of radiocesium and potassium in spinach plants grown at different shoot temperatures. J Plant Physiol 146:263−267
  • 10. Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728−731
  • 11. Chiu JC, Brenner ED, DeSalle R, Nitabach MN, Holmes TC, Coruzzi GM (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol Biol Evol 19:1066−1082
  • 12. Clark GB, Sessions A, Eastburn DJ, Roux SJ (2001) Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol 126:1072−1084
  • 13. Davenport RJ (2002) Glutamate receptors in plants. Ann Bot 90:549−557
  • 14. Demidchik V, Davenport RJ, Tester M (2002) Nonselective cation channels in plants. Ann Rev Plant Biol 53:67−107
  • 15. Demidchik V, Essah PA, Tester M (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219:167−175
  • 16. Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167−175
  • 17. Fizames C, Munos S, Cazettes C et al. (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Gene identification using the genome sequence. Plant Physiol 134:67−80
  • 18. Gaymard F, Pilot G, Lacombe B et al. (1998) Identification and disruption of a plant Shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647−655
  • 19. Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137:1105−1114
  • 20. Gillett AG, Crout NMJ, Absalom JP et al. (2001) Temporal and spatial prediction of radiocaesium transfer to food products. Radiat Environ Biophys 40:227−235
  • 21. Hampton CR (2005) Caesium uptake and accumulation in Arabidopsis thaliana. PhD Thesis, University of Birmingham
  • 22. Hampton CR, Bowen HC, Broadley MR et al. (2004) Cesium toxicity in Arabidopsis. Plant Physiol 136:3824−3837
  • 23. Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918−921
  • 24. Hua B-G, Mercier RW, Zielinski RE, Berkowitz GA (2003) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41:945−954
  • 25. Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463−469
  • 26. Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 10:51−62
  • 27. Kim SA, Kwak JM, Jae S-K, Wang M-H, Nam HG (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol 42:74−84
  • 28. Leng Q, Mercier RW, Hua B-G, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400−410
  • 29. Maathuis FJM, Filatov V, Herzyk P et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675−692
  • 30. Martínez-Cordero MA, Martinez V, Rubio F (2005) High-affinity K+ uptake in pepper plants. J Exp Bot 56:1553−1562
  • 31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473−497
  • 32. Payne KA, Bowen HC, Hammond JP et al. (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol 162:535−548
  • 33. Pilot G, Gaymard G, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773−787
  • 34. Reintanz B, Szyroki A, Ivashikina N et al. (2002) AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx. Proc Nat Acad Sci USA 99:4079−4084
  • 35. Rubio F, Santa-María GE, Rodríguez-Navarro A (2000) Cloning of Arabidopsis and barley cDNAs encoding HAK potassium transporters in root and shoot cells. Physiol Plant 109:34−43
  • 36. Sahr T, Voigt G, Paretzke HG, Schramel P, Ernst D (2005) Caesium-affected gene expression in Arabidopsis thaliana. New Phytol 165:747−754
  • 37. Santa-María GE, Danna CH, Czibener C (2000) Highaffinity potassium transport in barley roots. Ammoniumsensitive and -insensitive pathways. Plant Physiol 123:297−306
  • 38. Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Nat Acad Sci USA 101:8827−8832
  • 39. Smith JT, Comans RN, Beresford NA, Wright SM, Howard BJ, Camplin WC (2000) Chernobyl’s legacy in food and water. Nature 405:141
  • 40. Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999) Potassium uptake supporting plant growth in the absence of AKT1 channel activity −inhibition by ammonium and stimulation by sodium. J Gen Physiol 113:909−918
  • 41. Staunton S, Hinsinger P, Guivarch A, Brechignac F (2003) Root uptake and translocation of radiocaesium from agricultural soils by various plant species. Plant Soil 254:443−455
  • 42. Sunkar R, Kaplan B, Bouché N et al. (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533−542
  • 43. Talke IN, Blaudez D, Maathuis FJM, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286−293
  • 44. Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168−175
  • 45. White PJ (1997) Cation channels in the plasma membrane of rye roots. J Exp Bot 48:499−514
  • 46. White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465:171−189
  • 47. White P, Bowen H, Broadley M, Hammond J, Hampton C, Payne K (2004) The mechanisms of cesium uptake by plants. In: Inabe J, Tsukada H, Takeda A (eds) Proc of the Int Symp on Radioecology and Environmental Dosimetry, Rokkasho, Aomori, Japan, October 22−24, 2003. Institute for Environmental Sciences, Aomori, Japan, pp 255−262
  • 48. White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta 1564:299−309
  • 49. White PJ, Broadley MR (2000) Mechanisms of caesium uptake by plants. New Phytol 147:241−256
  • 50. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487−511
  • 51. White PJ, Swarup K, Escobar-Gutiérrez AJ, Bowen HC, Willey NJ, Broadley MR (2003) Selecting plants to minimise radiocaesium in the food chain. Plant Soil 249:177−186
  • 52. Zimmermann S, Chérel I (2005) Potassium. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell Publishing, Oxford, UK, pp 26−65
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0005-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.