PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multi-layer box model of carbon dynamics in soil

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract A multi-layer box model (MLB) for quantification of carbon fluxes between soil and atmosphere has been developed. In the model, soil carbon reservoir is represented by two boxes: fast decomposition box (FDB) and slow decomposition box (SDB), characterised by substantially different turnover time (TT) of carbon compounds. Each box has an internal structure (sub-compartments) accounting for carbon deposited in consecutive time intervals. The rate of decomposition of carbon compounds in each sub-compartment is proportional to the carbon content. With the aid of the MLB model and the 14C signature of carbon dioxide, the fluxes entering and leaving the boxes, turnover time of carbon in each box, and the ratio of mass of carbon in the slow and fast box (Ms/Mf) were calculated. The MBL model yields the turnover time of carbon in the FDB (TTf) ca. 14 for typical investigated soils of temperate climate ecosystems. The calculated contribution of the CO2 flux originating from the slow box (Fs) to the total CO2 flux into the atmosphere ranges from 12% to 22%. These values are in agreement with experimental observations at different locations. Assuming that the input flux of carbon (Fin) to the soil system is doubled within the period of 100 years, the soil buffering capacity for excess carbon predicted by the MLB model for typical soil parameters may vary in the range between 26% and 52%. The highest values are obtained for soils characterised by long TTf, and well developed old carbon pool.
Słowa kluczowe
Czasopismo
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, 30 A. Mickiewicza Ave., 30-059 Kraków, Poland, Tel.: +48 12/ 617 29 79, Fax: +48 12/ 634 00 10, kuc@novell.ftj.agh.edu.pl
Bibliografia
  • 1. Bird MI, Chivas AR, Head J (1996) A latitudinal gradient in carbon turnover times in forest soils. Nature 381:143−146.
  • 2. Dörr H, Münnich KO (1986) Annual variations of the 14C content of soil CO2. Radiocarbon 28:338−345.
  • 3. Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperate forest: radio-carbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51:33−69.
  • 4. Gorczyca Z (2003) Investigations of the variability of the soil CO2 flux and its isotopic composition in the southern Poland. PhD thesis. AGH University of Science and Technology, Kraków (in Polish).
  • 5. Gorczyca Z, Różański K, Kuc T, Michalec B (2003) Seasonal variability of the soil CO2 flux and its isotopic composition in southern Poland. Nukleonika 48:187−196.
  • 6. Haas H, Fisher DW, Thorstenson DC, Weeks EP (1983)13CO2 and 14CO2 measurements on soil atmosphere sampled in the sub-surface unsaturated zone in the western Great Plains of the US. Radiocarbon25:301−314.
  • 7. Harkness DD, Harrison AF, Bacon PJ (1986) The temporal distribution of ‘bomb’ 14C in a forest soil. Radiocarbon 28:328−337.
  • 8. Harrison KG, Bonani G (2000) A strategy for estimating the potential soil carbon storage due to CO2 fertilization. In: Wigley TML, Schimel DS (eds) The carbon cycle. Cambridge University Press, Cambridge, pp 141−150.
  • 9. Harvey LD (2000) Box models of the terrestrial bio-sphere. In: Wigley TML, Schimel DS (eds) The carbon cycle. Cambridge University Press, Cambridge, pp 23−247.
  • 10. Kaduk J, Heimann M (1994) The climate sensitivity of the Osnabrueck biosphere model on the ENSO timescale. Ecol Model 75/76:239−256.
  • 11. Kohlmaier GH, Sire E-O, Janecek A, Keeling ChD, Piper S, Revelle R (1989) Modelling the seasonal contributionof a CO2 fertilization effect of the terrestrial vegetation to the amplitude increase in atmospheric CO2 at Mauna Loa Observatory. Tellus 41B:487−510.
  • 12. Kuc T, Różański K, Zimnoch M, Nęcki JM, Korus A (2003) Anthropogenic emissions of CO2 and CH4 in urban environment traced by measurements of atmospheric concentration and carbon isotope composition; a case study from southern Poland. Appl Energ 75:193−203.
  • 13. Lenton TM (2000) Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus 32B:1159−1188.
  • 14. Levin I, Kromer B (1997) Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 34:205−218.
  • 15. O’Brien BJ (1986) The use of natural atmospheric C-14 to investigate the dynamics of soil organic carbon. Radiocarbon 28:358−362.
  • 16. Parton WJ, Scurlock MO, Ojima DS et al. (1993) Observations and modelling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem Cycles 7:785−809.
  • 17. Sarminto JL, Le Quere LC, Pascala SW (1995) Limiting future atmospheric carbon dioxide. Global Biogeochem Cycles 9:121−137.
  • 18. Schimel D, Alves D, Enting I et al. (2000) CO2 and the carbon cycle extract from the 1995 intergovernmental panel on climate change (IPCC) “Second Assessment Report”, Climate change 1995: The science of climate change. In: Wigley TML, Schimel DS (eds) The carbon cycle. Cambridge University Press, Cambridge, pp 37−49.
  • 19. Thorstenson DC, Weeks EP, Haas H, Fisher DW (1983) Distribution of gaseous 12CO2, 13CO2, and 14CO2 in the sub-soil unsaturated zone of the western US Great Plains. Radiocarbon 25:315−346.
  • 20. Truding CM, Enting IG, Francey RJ, Etheridge DM, Rayner PJ (1999) Long-term variability in the global carbon cycle inferred from a high-precision CO2 and δ13C ice-core record. Tellus 51B:233−248.
  • 21. Wang Y, Amundson R, Trumbore S (1994) A model for soil 14CO2 and its implications for using 14C to date pedogenic carbonate. Geochim Cosmochim Acta 58:393−399.
  • 22. Wigley TML (1993) Balancing the global carbon budget. Implications for projections of future carbon dioxide concentration changes. Tellus 45B:409−425.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0004-0068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.