Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Theoretical data for positron scattering from a thin silicon film and semi-infinite silicon are presented as a function of incident and outgoing angles and energies. These theoretical data of the scattering processes of low energy positrons penetrating into silicon were performed by Monte Carlo simulation. The simulation is based on the use of different types of differential cross sections for individual elastic and inelastic scattering i) inelastic scattering; Gryzinski's excitation function to simulate the energy loss and Liljequist's model to calculate the inelastic scattering cross section, ii) elastic scattering; the screened Rutherford differential cross section with the spin-relativistic factor. In calculations on positron traversing matter, it is important to know the transmission through medium, their path lengths, and their energy and angular distribution through matter. The simulation results are well agreed with experiments.
Czasopismo
Rocznik
Tom
Strony
37--42
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Faculty of Science and Literature, Department of Physics, Balikesir University, 10100 Balikesir, Turkey, Tel.: +90 266/ 249 33 58-59 ext. 131 Fax: +90 266/ 245 63 66, aydina@balikesir.edu.tr
Bibliografia
- 1. Aydin A (2000) Total cross sections for elastic scattering of positrons for silicon, gallium and antimony atoms. J Instrum Sci Tech Balikesir University 2:47−57.
- 2. Aydin A (2002) Monte Carlo simulation of kilovolt positron penetration and backscattering probabilities in solids. Nucl Instrum Meth B 197:11−16.
- 3. Baker JA, Chilton NB, Jensen KO, Walker AB, Coleman PG (1991) Material dependence of positron implantation depth. J Phys-Condens Matter 3:4109−4114.
- 4. Berger MJ (1991) Differences in the multiple scattering of positrons and electrons. Appl Radiat Isot 42;10:905−916.
- 5. Bouarissa N, Walker AB, Aourag H (1998) Back-scattering of slow positron from semi-infinite aluminum. J Appl Phys 83;7:3643−3648.
- 6. Fernández-Varea JM, Liljequist D, Csillag S, Räty R, Salvat F (1996) Monte Carlo simulation of 0.1−100 keV electron and positron transport in solids using optical data and partial wave methods. Nucl Instrum Meth B 108:35−50.
- 7. Gryzinski M (1965) Classical theory of atomic collisions. Phys Rev A 138:305−358.
- 8. Kotera M, Murata K, Nagami K (1981) Monte Carlo simulation of 1−10 keV electron scattering in an aluminum target. J Appl Phys 52;12:7403−7408.
- 9. Liljequist D (1983) A simple calculation of inelastic mean free path and stopping power for 50 eV −50 keV electrons in solids. J Phys D: Appl Phys 16:1567−1582.
- 10. Mäkinen J, Palko S, Martikainen J, Hautojärvi P (1992) Positron backscattering probabilities from solid surfaces at 2−30 keV. J Phys-Condens Matter 4:L503−L508.
- 11. Massoumi GR, Lennard WN, Schultz PJ, Porcelli TA, Simpson PJ (1995) Energy loss measurements for 20 keV positrons in Al thin films. Appl Surf Sci 85:39−42.
- 12. Mills AP, Wilson RJ (1982) Transmission of 1−6 keV positrons through thin metal films. Phys Rev A26;1:490−500.
- 13. Mott NF, Massey HSW (1987) The theory of atomic collisions, 3rd ed. Oxford University Press, New York.
- 14. Nigam BP, Mathur VS (1961) Difference in the multiple scattering of electrons and positrons. Phys Rev 121:1577−1580.
- 15. Özmutlu EN, Aydin A (1994) Monte Carlo calculations of 50 eV −1 MeV positrons in aluminum. Appl Radiat Isot 45;9:963−971.
- 16. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, New York.
- 17. Seltzer SM (1991) Electron-photon Monte-Carlo calcu-lations: the ETRAN code. Appl Radiat Isot 42:917−941.
- 18. Shimuzu R, Ichimura S (1983) Direct Monte Carlo simulation of scattering processes of kV electrons in aluminum; comparison of theoretical N(E) spectra with experiment.Surf Sci 133:250−266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0004-0066