PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Freeze-out and anisotropic flow in microscopic models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the 18th International conference on Nucleus-Nucleus Collisions QUARK MATTER 2005, 4-9 August, 2005, Budapest, Hungary
Języki publikacji
EN
Abstrakty
EN
It appears that in microscopic calculations hadrons are continuously emitted from the whole reaction volume. Different species decouple at different times. At RHIC energies significant fractions of both mesons and baryons are emitted from the surface region within the first two fm/c. The hadrons contribute differently to the formation and evolution of the anisotropic flow, which can be decomposed into three components: (i) flow created by hadrons emitted from the surface at the onset of the collision; (ii) flow produced by jets; (iii) hydrodynamic flow. Due to these features, e.g., the elliptic flows of mesons and baryons have different transverse momentum dependences. Comparison with experimental data reveals that centrality, rapidity, and transverse momentum dependences of the anisotropic flow are reproduced, at least qualitatively, by the microscopic models.
Czasopismo
Rocznik
Strony
3--6
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Department of Physics, University of Oslo, PB 1048 Blindern, N-0316 Oslo, Norway and Institute for Nuclear Physics, Moscow State University, RU-119899 Moscow, Russia, Tel.: +47 22 856 459, Fax: +47 22 856 422, larissa.bravina@fys.uio.no
Bibliografia
  • 1. Ackermann KH et al. (STAR Collaboration) (2001)Elliptic flow in Au+Au collisions at GeV. Phys Rev Lett 86:402?407
  • 2. Alt C et al. (NA49 Collaboration) (2003) Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40 AGeV and 158 AGeV. Phys Rev C 68:034903
  • 3. Amelin NS, Bravina LV (1990) The Monte Carlo realization of quark-gluon string model for description of high-energy hadron-hadron interactions. Sov J Nucl Phys 51:133?140
  • 4. Amelin NS, Gudima KK, Sivoklokov SYu, Toneev VD (1990) Further development of a quark-gluon string model for describing high-energy collisions with a nuclear target. Sov J Nucl Phys 52:172?178
  • 5. Back B et al. (PHOBOS Collaboration) (2003) Significance of the fragmentation region in ultrarelativistic heavy-ion collisions. Phys Rev Lett 91:052303
  • 6. Back B et al. (PHOBOS Collaboration) (2004) Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at GeV. APS arXiv:nucl-ex/0407012
  • 7. Belt Tonjes M et al. (PHOBOS Collaboration) (2004)Flow in Au+Au collisions at RHIC. J Phys G30:S1243?S1246
  • 8. Bravina LV (1995) Scaling violation of transverse flow in heavy ion collisions at AGS energies. Phys Lett B 344:49?54
  • 9. Bravina LV, Csernai LP, Faessler A, Fuchs C, ZabrodinEE (2002) Transition to meson dominated matter at RHIC.Consequences for kaon flow. Phys Lett B 543:217?226
  • 10. Bravina LV, Csernai LP, Levai P, Amelin NS, Strottman D (1994) Fluid dynamics and quark gluon string model: what we can expect for Au+Au collisions at 11.6 AGeV/c.Nucl Phys A 566:461c?464c
  • 11. Bravina LV, Faessler A, Fuchs C, Zabrodin EE (2000) Microscopic study of energy and centrality dependence of transverse collective flow in heavy ion collisions. Phys Rev C 61:064902
  • 12. Bravina LV, Mishustin IN, Amelin NS, Bondorf JP, Csernai LP (1995) Freeze-out in relativistic heavy ion collisions at AGS energies. Phys Lett B 354:196?201
  • 13. Bravina LV, Mishustin IN, Bondorf JP, Faessler A, Zabrodin EE (1999) Microscopic study of freezeout in relativistic heavy ion collisions at SPS energies. Phys Rev C 60:044905
  • 14. Bravina LV, Tywoniuk K, Zabrodin EE et al. (2004)Elliptic flow at RHIC: where and when was it formed? APS arXiv:hep-ph/0412343
  • 15. Burau G, Bleibel J, Fuchs C, Faessler A, Bravina LV, Zabrodin EE (2005) Anisotropic flow of charged and identified hadrons in the quark-gluon string model for Au+Au collisions at GeV. Phys Rev C 71:054905
  • 16. Chen LW, Greco V, Ko CM, Kolb PF (2005) Pseudorapidity dependence of anisotropic flows in relativistic heavy-ion collisions. Phys Lett B 605:95?100
  • 17. Csernai LP, Röhrich D (1999) Third flow component as QGP signal. Phys Lett B 458:454?459
  • 18. Gribov LV, Levin EM, Ryskin MG (1983) Semihard processes in QCD. Phys Rep 100:1?150
  • 19. Gribov V (1968) A reggeon diagram technique. Sov Phys JETP 26:414?422
  • 20. Kaidalov AB, Ter-Martirosian KA (1982) Pomeron as quark-gluon strings and multiple hadron production at SPS collider energies. Phys Lett B 117:247?251
  • 21. Liu H, Panitkin S, Xu N (1999) Event anisotropy in high energy nucleus-nucleus collisions. Phys Rev C 59:348?353
  • 22. Snellings RJM, Sorge H, Voloshin SA, Wang FQ, Xu N (2000) Novel rapidity dependence of directed flow in high-energy heavy ion collisions. Phys Rev Lett 84:2803?2805
  • 23. Stöcker H, Bratkovskaya EL, Bleicher M, Soff S, Zhu X(2005) Nonequilibrium models of relativistic heavy-ion collisions. J Phys G 31:S929?S942
  • 24. Voloshin S, Zhang Y (1996) Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Z Phys C 70:665?671
  • 25. Zabrodin EE, Bravina LV, Burau G, Bleibel J, Fuchs C, Faessler A (2005) Anisotropic flow of strange particles at RHIC. J Phys G 31:S995?S999
  • 26. Zabrodin EE, Bravina L, Fuchs C, Faessler A (2004)Microscopic description of anisotropic flow in relativistic heavy ion collisions. Prog Part Nucl Phys 53:183?196
  • 27. Zabrodin EE, Fuchs C, Bravina LV, Faessler A (2001)Elliptic flow at collider energies and cascade string odels: the role of hard processes and multipomeron exchanges. Phys Lett B 508:184?190
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ6-0004-0037
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.