PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of rill networks on soil - mantled experimental landscapes driven by rainfall and baselevel adjustments

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experiments were conducted using a soil-mantled flume subjected to simulated rain and downstream baselevel lowering to quantify the evolution of rill networks. Results show that: (1) headcuts formed by baselevel lowering were the primary drivers of rill incision and network development, and the communication of this wave of degradation occurred very quickly through the landscape, (2) rill networks extended upstream by headcut erosion, where channels bifurcated and filled the available space, (3) rill incision, channel development, and peaks in sediment efflux occurred episodically, linked directly to the downstream baselevel adjustments, and (4) sediment discharge and rill drainage density approached asymptotic values with time following baselevel adjustments despite continuous application of rainfall. These findings have important implications for the prediction of soil loss, rill network development, and landscape evolution where headcut erosion can occur.
Czasopismo
Rocznik
Tom
Strony
57--63
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
autor
  • Department of Geography, University at Buffalo, Buffalo, New York, USA, lmg@nyserda.org
Bibliografia
  • Bennett S.J., Alonso C.V., Prasad S.N. & Römkens M.J.M., 2000. An experimental study of headcut growth and migration in upland concentrated flows. Water Resourc. Res. 36: 1911–1922.
  • Brunton, D.A. & Bryan R.B., 2000. Rill network development and sediment budgets.Earth Surf. Proc. Landf. 25: 783–800.
  • Chandler J.H., Shiono K., Ponnambalam R.& Lane S., 2001. Measuring flume surfaces for hydraulics research using a Kodak DCS460. The Photogram. Record 17: 39–61.
  • Gardner T.W., 1983. Experimental study of knickpoint and longitudinal profile evolution in cohesive, homogenous material. Geol. Soc. Am. Bull. 94: 664–672.
  • Hancock G.R. & Willgoose G.R., 2001. Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: declining \equilibrium landforms. Water Resourc. Res. 37: 1981–1992.
  • Howard A.D., 1971. Simulation of stream networks by headward growth and branching. Geog. Anal. 3: 29–50.
  • Huang C., Gascuel-Odoux, C. & Cros-Cayot, S.,2001. Hillslope topographic and hydrologic effects on overland flow and erosion.Catena46: 177–188.
  • Lal R., 2001. Soil degradation by erosion. Land Degrad. Dev. 12: 519–539.
  • Parker R.S., 1977. Experimental study of basin evolution and its hydrologic implications. Ph.D. Thesis, Colo. State Univ., Ft. Collins.
  • Pimentel D., Harvey C., Resosudarmo P., Sinclair K., Kurz D., McNair M., Crist S., Shpritz L., Fitton L., Saffouri R. & Blair R., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science 267: 1117–1123.
  • Poesen J., Nachtergaele J., Verstraeten G. & Valentin C., 2003. Gully erosion and environmental change: importance and research needs.Catena 50: 91–133.
  • Savat J. & DePloey J., 1982. Sheetwash and rill development.In: Bryan, R.& Yair, A. (Eds.)Badland Geomorphology and Piping. Geobooks, Norwich: 113–126.
  • Slattery M.C. & Bryan R.B., 1992. Hydraulic conditions for rill incision under simulated rainfall: a laboratory experiment.Earth Surf. Proc. Landf. 1 7: 127–146.
  • Torri D., Sfalanga M. & Chisci F.G., 1987. Threshold conditions for incipient rilling. In: Bryan, R.B. (ed.) Rill Erosion:Processes and Significance. Catena-Verlag, Catena Supplement 8, Germany: 97–105
  • Yao C., Lei T., Elliot W.J., McCool D.K., Zhao J. & Chen S., 2008. Critical conditions for rill initiation. Trans., Am. Soc. Agric. and Biol. Engrs. 51 : 107–114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0052-0105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.