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Calculation of exit gradients at drainage ditches
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Abstract: Seepage gradients play an important role in the detachment of soil particles from the side walls of stream chan-
nels and drainage ditches. Most seepage studies have focused on water losses. Relatively few have addressed the determina-
tion of these gradients as causes of soil loss and incipient gully development. This paper presents the methodology of calcu-
lating these gradients on any point of the soil-water interface of a subsurface flow system, for which a close-form analytical
solution was obtained (Römkens 2009). Such a solution was derived using conformal transformations for a situation in which
a ponded surface drains by subsurface flow into a ditch with a water table lower than that of the ponded surface. The derived
relationships allow a close estimate of the soil detachment forces on the wetted drainage perimeter of the stream system.
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Introduction

There is increasing recognition that the role of
subsurface flow may play a significant role in gully
erosion through the increase in soil water pressures
and/or seepage that adversely affects soil stability
and detachment of soil particles. Recently, the re-
sults of an analytical study was published that al-
lowed the estimation of seepage and the evaluation
of pressure potentials near an incised ditch (gully) in
a homogeneous aquifer of finite thickness (Römkens
2009). This article uses the results of these analyses
to develop pressure exit gradient relationship at the

point of water entry along the ditch surface into the
stream system.

Approach

The model chosen consists of incised ditch into a
flat landscape with a constant, horizontal water table
higher than the water level in the ditch. The soil con-
ducting water has a finite depth and is homogeneous
and isotropic and has, therefore, a constant satu-
rated hydraulic conductivity that is not dependent on
the flow direction. The field adjacent to the ditch is
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Fig. 1. A schematic representation of the flow region



ponded except for a small strip of width c along the
ditch. No water is allowed to enter the soil profile
through the surface of this strip. Thus, water flows
through the permeable soil under a steady state re-
gime from the field to the ditch. A physical realiza-
tion of this flow region is shown in Figure 1. The in-
cised ditch has a circularly shaped bottom which is
filled with water that is maintained at a constant wa-
ter level.

This flow regime is, in fact, a potential flow prob-
lem that can be described by the Laplace equation in
terms of potential functions (x,y) and stream func-
tions (x,y). The general solution for this case has
been presented by Römkens (2009) and is obtained
by a series of conformal transformations:

where c is the width of a non-ponded strip (buffer
strip) adjacent to the gully or ditch and r = –2 cos b/d.
The latter parameter represents the relationship be-
tween the location of the drain relative to the depth
of the impermeable layer. In the analysis the case for
which c = 0 is called the drain model and the case for
which c represents a finite distance is called the ditch
model. Seepage calculations were made with the
drain and ditch model.

Seepage gradients

The general solution shown for this flow field in
Equation 2 indicates a close-form explicit expression
with the aequipotential and streampotential func-
tions on the right hand side (RHS) and the spatial
coordinates on the left hand side (LHS). Given the
explicit nature of the general solution, one can now
calculate for each point z(x,y) the corresponding val-
ues of ( ). The expressions derived from Eq. 2
are:

By specifying a given value for the streamline in
terms of a fraction of the total seepage Q1 in Eqs. (2)
and (3), one defines in fact for each potential along
the streamline the corresponding z(x,y) values. Of
interest in this analysis is the seepage gradient or the
potential gradient d( )/ds at the drain and ditch
boundary, where ds is the spatial differential along a
given streamline. Figure 2 shows a schematic repre-
sentation of the exit gradient at the wetted boundary
for a given streamline.

From Figure 2, the gradient along the streamline
at the drain or ditch boundary is given by the expres-
sion:

d( )/ds=d( )/(dx + dy)=1/(dx/d( )+dy/d( )) (4)

To calculate the gradient one needs to determine
the explicit relationships x as a function of and y,
and y as a function of and x, respectively. These
functions can be obtained from expressions (2) and
(3). To facilitate the algebraic manipulations, we re-
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Fig. 2. Schematic representation of streamlines in the flow
field near the drain
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define the RHS of Eqs. (2) and (3) as f1( ) and
f2( ), respectively. Then Eq. 2 yields the following
explicit relationships for y and x:
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Likewise, Eq. 3 yields the explicit relationships
for y and x:
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Mutual substitution of Eqs. 6 and 8 yields after
several algebraic manipulations:
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where A = (cosh ( c/d) – a.f1( ))2, B = (a.f2( ))2,
and a = (cosh( c/d) – cos( b/d)). Equation (10) rep-
resents an explicit relationship of y in terms of for a
given or streamline. The relationship dy/d can
now readily be determined by straightforward differ-
entiation.

Likewise, mutual substitution of Eqs. 5 and 7
yields after several algebraic manipulations:
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where A and B are defined as before. Equation (10)
represents an explicit relationship of x in terms of
for a given or streamline. The relationship dx/d
can now also be determined by straightforward dif-
ferentiation.

Having those relationships (9) and (10), the gra-
dient dö/ds is now determined by virtue of Eq. 4 and
the location of the gradient on the wetted perimeter
is determined by virtue of Eqs. (2) and (3) bearing in
mind the value of the streamline in terms of a frac-
tion of Q1 and the potential function that represents
the difference between the water levels in the field
and the ditch adjusted for the hydraulic conductivity.
Also, the angle of the exit gradient with the positive
x-axis is determined from the ratio of d /dy and
d /dx. The derivation of these quantities are alge-
braically quite involved but are, for this case, explicit
and thus are readily amenable to straightforward
programming and evaluations.

In evaluating f1( ) and f2( ) define u =
exp(– /Q1) and substitute the quantity u into the
RHS of Eqs. 2 and 3. The expressions df1/d and
df2/d are now readily determined from Eqs. 11 and
12 using the chain rule:

df1/d = df1/du · du/d = df1/du · (– u/Q1) (11)

and

df2/d = df2/du · du/d = df2/d · (– u/Q1) (12)

In this presentation, calculations will be made for
the simple for the exit gradients at different locations
of the drain and gully boundary.
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