PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling and validation of 12.7 MM FSP impact into ALFC shield - ARMOX 500T steel plate system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study develops a methodology for numerical modelling and simulation of a 12.7 mm 13.4 g FSP fragment impact into the ALFC shield – ARMOX 500T steel plate system. The ALFC shield is composed of the ALF energyabsorbing subsystem and a 10 mm-thick 99,7% Al2O3 alumina ceramic layer. The ALF subsystem is designed to absorb blast wave impact energy induced by explosive materials up to 10 kg TNT. The ceramic layer is designed to stop fragments from IED explosion. The 5 mm-thick Armox 500T steel plate constitutes the body bottom segment of a light armoured vehicle. The ALF subsystem has the following layered structure: Al2024 aluminium alloy plate, SCACS hybrid laminate plate, ALPORAS aluminium foam, SCACS hybrid laminate plate. The layers are joined with Soudaseal 2K chemoset glue. SCACS hybrid laminate contains the following components: VE 11-M modified vinylester resin (matrix), SWR800 S-glass plain weave fabric, Tenax HTA40 6K carbon plain weave fabric, Kevlar 49 T 968 aramid plain weave fabric. The total thickness of the ALFC shield amounts to 90 mm. Proof ground tests of a 12.7 mm 13.4 g FSP fragment impact into the ALFC shield - ARMOX 500T steel plate system have been performed at impact velocity 715 m/s and used for experimental validation of numerical modelling and simulation. In the numerical modelling, the aluminium alloy plate and Armox 500T steel plate are working in the elasto-plastic range according to Johnson-Cook model. The 99.7% Al2O3 alumina ceramic is working in elasto-short range according to JH-2 Johnson-Holmquist model. The simulations correspond to large displacements, large deformations and potential contact among all the components of the system. In FE mesh, the 8-node 24 DOF hexahedral finite elements with single integration point have been used. Failure criteria governing ad-hoc erosion of finite elements have been applied. The FEM modelling, simulation and postprocessing have been carried out using Catia, HyperMesh, LS-DYNA and LS-PrePost systems. The simulation results in the form of displacement/penetration contours and the FSP final deformation have been compared with the experimental results.
Twórcy
  • Military University of Technology Department of Mechanics and Applied Computer Science Gen. S. Kaliski Street 2, 00-908 Warsaw, Poland tel.: +48 22 6839947, fax: +48 22 6839355, mklasztorny@wat.edu.pl
Bibliografia
  • [1] AEP-55, Volume 1 (Ed. 1): Procedures for Evaluating the Protection Levels of Logistic and Light Armoured Vehicles for KE and Artillery Threats, NATO/PFP Unclassified.
  • [2] AEP-55, Volume 2 (Ed. 1): Procedures for Evaluating the Protection Levels of Logistic and Light Armoured Vehicle Occupants for Grenade and Blast Mine Threats Level, NATO/PFP Unclassified.
  • [3] DGLEPM DGLEPM T & E Engineering Std. – Improvised Explosive Device Protection Systems, LOI/P&A for TAPV Project, Unclassified.
  • [4] Hallquist, J. O. (Ed.), LS-DYNA V971 R4 Beta. Keyword User’s Manual, LSTC Co., CA, USA 2009.
  • [5] Karpenko, A., Ceh, M., Experimental Simulation of Fragmentation Effects of an Improvised Explosive Device, 23rd International Symposium on Ballistics, Tarragona, Spain 2007.
  • [6] Klasztorny, M., Dziewulski, P., Niezgoda, T., Morka, A., Modelling and Numerical Simulation of the Protective Shield – Protected Plate – Test Stand System Under Blast Shock Wave, Journal of KONES Powertrain and Transport, Vol. 17, No. 3, pp. 197-204, 2010.
  • [7] Klasztorny, M., Niezgoda, T., Panowicz, R., Gotowicki, P., Experimental Investigations of the Protective Shield – Protected Plate – Test Stand System Under Blast Shock Wave, Journal of KONES Powertrain and Transport, Vol. 17, No. 4, pp. 229-236, 2010.
  • [8] MIL-DTL-46593B (MR), Detail Specification. Projectile, Calibres .22, .30, .50 and 20 mm Fragment-Simulating, Department of Defense, USA 2008.
  • [9] Morka, A., Material Data Basis [in Polish], Research Report [unpublished], Military University of Technology, Warsaw, Poland 2010.
  • [10] Niezgoda, T., Kosiuczenko, K., Barnat, W., Panowicz, R., Numerical Analysis of Impact of the Fragment into the Layered Plate, Open-Cast Mining [Górnictwo Odkrywkowe], Vol. 59, No. 3, pp. 61-64, 2010.
  • [11] STANAG 4569 (Ed. 1): Protection Levels for Occupants of Logistic and Light Armoured Vehicles, NATO/PFP Unclassified.
  • [12] STANAG 4190: Test Procedures for Measuring Behind-Armour Effects of Anti-Armour Ammunition, NATO/PFP Unclassified.
  • [13] Tham, C. Y., Tan, V. B. C., Lee, H. P., Ballistic Impact of a Kevlar Helmet. Experiment and Simulations, International Journal of Impact Engineering, Vol. 35, No. 5, pp. 304-318, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0049-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.