PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model of impact underwater detonation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Minehunters are subjected to specific sea loads due to waving and dynamical impacts associated with underwater explosion. Sea waving can be sufficiently exactly modelled by means of statistical methods. Much more problems arise from modelling impacts due to underwater explosion. Knowledge of a character of impulse loading which affects ship shaft line can make it possible to identify potential failures by means of on-line vibration measuring systems. The problem of influence of sea mine explosion on hull structure is complex and belongs to more difficult issues of ship dynamics. Underwater explosion is meant as a violent upset of balance of a given system due to detonation of explosives in water environment. A paper presents a proposal of identification of a degree of hazard the ship's hull forced from underwater explosion. A theoretical analysis was made of influence of changes of hull structure in vicinity of hull. The main problem of naval vessels is a lack of dynamical requirements of stiffness of the hull. Modelled signals and hull structure were recognized within sensitive symptoms of three sub models: model of hull structure, model of impact and model of propulsion system. All sub models allow testing forces and their responses in vibration spectrum using SIMULINK software and FEM models.
Twórcy
  • Polish naval Academy Mechanical – Electrical Faculty Smidowicza Street 69, 81-103 Gdynia, Poland tel.: +48 58 626 26 35, fax: +48 58 626 26 48, a.grzadziela@amw.gdynia.pl
Bibliografia
  • [1] Borkowski, W, Rybak, P, Hryciów, Z, Michałowski, B., Multi-axle special-purpose vehicle in blast load conditions, Acta mechanica et automatica, Vol. 1, No. 2, 2007.
  • [2] Brett, J. M., Numerical Modelling of Shock Wave and Pressure Pulse Generation by Underwater Explosion, DSTO Aeronautical and Marine Research Laboratory PO Box 4331, Melbourne, Australia.
  • [3] Cole, R. H., Underwater Explosions, Princeton University Press, Princeton 1948.
  • [4] Cudny, K., Powierża, Z., Selected problems of shock resistance of ships (in Polish), Publ. Polish Naval University, Gdynia 1987.
  • [5] Dunbar, T. E., Modelling of Close-Proximity Underwater Explosion Loads and Structural Response, Defence R&D Canada – Atlantic, DRDC Atlantic CR 2008-272, 2009.
  • [6] Hans, U. Mair, Preliminary Compilation of Underwater Explosion Benchmarks, Proceedings of the 67th Shock and Vibration Symposium, Vol. I, SAVIAC, 361-379, 1996.
  • [7] Huang, Hao, Jiao, Qing Jie, Numerical modelling of underwater explosion by 1- Dimensional ANSYS-AUTODYN, Workshop on Energetics-Past and Present, Hong Kong, China 2010.
  • [8] Lits, M. B., Liu, G. R., Comparative Study of the Real and Artificial Detonation Models in Underwater Explosion Simulations, lSSN 0204- 3572, Elektron. modelirovanije, T. 25, Nr 2, 2003.
  • [9] Zarrini, M., Pralhad, R. N., Estimation of Shock velocity and pressure of detonations and finding their flow parameters, World Academy of Science, Engineering and Technology 68, pp. 234–238, 2010.
  • [10] Rarnajeyathilagam, K., Vendhan, C. P., Underwater Explosion Damage of Ship Hull Panels, Defence Science Journal, Vol. 53, No. 4, pp. 393-402, 2003.
  • [11] Young, S. Shin, Ship shock modelling and simulation for far-field underwater explosion, Computers and Structures 82, 2211–2219, 2004.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0047-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.