PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the FEM simulation of joining by forming operations

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Symulacja metodą elementów skończonych procesów FSW i LFW
Języki publikacji
EN
Abstrakty
EN
Solid state welding processes are increasing their application in industrial environments due to their strong advantages with respect to traditional fusion techniques. Advanced FEM tools are requested in order to carry out a detailed engineering of the processes and to get quantitative results useful for the set up of the processes. Also basic investigations regarding process mechanics and material flow are important in order to fully understand the fundamental aspects of the processes and the bonding conditions at the interface of the specimens to be welded. In the paper Friction Stir Welding (FSW) and Linear Friction Welding (LFW) operations are considered and numerical results derived from FE models of the two processes are shown. The proposed results give the idea of the potentialities of the numerical tool for the two considered processes and in particular furnish interesting information on the actual bonding conditions at the welding zone.
PL
W artykule przedstawiono możliwości metody elementów skończonych (MES) w zakresie modelowania procesów spajania przez odkształcenie. Szczególny nacisk położono na procesy zgrzewania tarciem z mieszaniem zgrzewanych materiałów (ang. Friction Stir Welding FSW) i liniowego spajania tarciem (ang. Linear Friction Welding LFW). Liczba zastosowań procesów spajania w stanie stałym szybko rośnie, ze względu na liczne zalety tych procesów w przemyśle w stosunku do tradycyjnych metod spajania. Zaawansowane modele MES są potrzebne dla przeprowadzenia dokładnej analizy tych procesów i uzyskania ilościowych wyników, które są użyteczne dla zaprojektowania technologii spajania. Badania mechanicznych aspektów procesów spajania oraz płynięcia materiału w tym procesie są również istotne dla pełnego zrozumienia podstaw tych procesów i warunków łączenia się materiałów. W artykule omówiono procesy FSW i LFW i przedstawiono wyniki symulacji MES dla tych procesów. Zaprezentowane wyniki pokazują możliwości numerycznego modelowania w zakresie wspierania projektowania procesów spajania, ze szczególnym uwzględnieniem warunków łączenia się materiałów w strefie spajania.
Słowa kluczowe
EN
FSW   LFW   material flow  
Wydawca
Rocznik
Strony
249--258
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
autor
Bibliografia
  • Barnes, T.A., Pashby, I. R., 2000, Joining techniques for aluminium spaceframes used in automobiles Part I + II, Journal of Materials Processing Technology, 99, 62-71.
  • Barreiro, P., Schulze, V., Lohe, D., Marre, M., Beerwald, C, Homberg, W., Kleiner, M., 2006, Strength of tubular Joints made by Electromagnetic Compression at quasistatic and cyclic loading, Proceedings of ICHSF 2006 -2nd International Conference on High Speed Forming, Dortmund, Germany, 107-116.
  • Bayinder, R., Ates, H., 2005, Comparison of the constructed control methods for a friction-welding machine, Materials and Manufacturing Processes, 20, 31-146.
  • Bokhari, N., 1995, Self-piercing riveting - process and equipment, Welding and Metal Fabrication, 63, 186-188.
  • Buffa, G., Hua, J., Shivpuri, R., Fratini, L., 2006, A continuum based FEM model for friction stir welding - model development, Mat. Science and Eng., A419/1-2, 389-396.
  • Ceretti, E., Fratini, L., Giardini, C, La Spisa, D., 2010, Numerical Modelling of the Linear Friction Welding Process, Proceedings of Esaform 2010 Conference, Brescia, April 2010, CD-ROM.
  • Ceschini, L., Morri, A., Rotundo, F., Jun, T.S., Korsunsky, A.M., 2010, A study on similar and dissimilar linear friction welds of 2024 Al alloy and 2124Al/SiCP composite, Advanced Materials Research, 89-91, 461-466.
  • Chen, CM., Kovacevic, R., 2003, Finite element modeling of friction stir welding - thermal and thermomechanical analysis, Int. J. of Machine Tools & Manufacture, 43, 1319-1326.
  • Dalgaard, E., Coghe, F., Rabet, L., Jahazi, M., Wanjara, P., Jonas, J.J., 2010, Texture evolution in linear friction welded Ti-6A1-4V, Advanced Materials Research, 89-91, 124-129.
  • Di Lorenzo G., Landolfo, R., 2004, Shear experimental response of new connecting systems for cold-formed structures, Journal of Constructional Steel Research, 60/3-5, 561-579.
  • Fratini, L., Buffa, G., Palmeri, D., Hua, J., Shivpuri, R., 2006, Material flow in FSW of AA7075-t6 butt joints: numerical simulations and experimental verifications, Science and Technology of Welding and Joining, 11 (4), 412-421.
  • TWI Bulletin, High speed sheet joining by mechanical fastening, 1996, January/February.
  • Jun, T.-S., Song, X., Rotundo, F., Ceschini, L., Morri, A., Threadgill, P., Korsunsky, A.M., 2010, Numerical and experimental study of residual stresses in a linear friction welded Al-SiCp composite, Advanced Materials Research, 89-91, 268-274.
  • Korsunsky, A.M., Regino, G.M., Nowell, D., Karadge, M., Grant, B., Withers, P.J., Preuss, M., Baxter G., 2009, Inertia friction welds between nickel superalloy components: analysis of residual stress by eigenstrain distributions, J. Strain Analysis, 44, 159-167.
  • Lee, W.B., Yeon, Y.M., Jung, S.B., 2003, The improvement of mechanical properties of friction-stir-welded A356 Al alloy, Mat. Science & Engineering, A355, 154-159.
  • Li, W.-Y., Ma, T., Li J., 2009, Numerical simulation of linear friction welding of titanium alloy: Effects of processing parameters, Materials and Design, 31(3), 1497-1507.
  • Li, W.-Y., Ma, T., Zhang, Y., Xu, Q., Li, J., Yang, S., Liao, H., 2008a, Microstructure characterization and mechanical properties of linear fiction welded Ti-6A1-4V alloy, Advanced Engineering Materials, 10(1-2), 89-92.
  • Li, W.-Y., Ma, T.J., Yang, S.Q., Xu, Q.Z., Zhang, Y., Li, J.L., Liao, H.L., 2008b, Effect of friction time on flash shape and axial shortening of linear friction welded 45 steel, Materials Letters, 62, 293-296.
  • Marre, M., Ruhstorfer, M., Tekkaya, A.E., Zaeh, M.F., 2009, Manufacturing of lightweight frame structures by innovative joining by forming processes, Proceedings of Esaform 2009 Conference, Twente, the Netherlands, CD-ROM.
  • Mary, C, Jahazi, M., 2008, Multi-scale analysis of IN-718 microstructure evolution during Linear Friction Welding, Advanced Engineering Materials, 10(6), 573-578.
  • Mishra, R.S., Ma, Z.Y., 2005, Friction Stir Welding and Processing, Materials, Science and Engineering, R50, 1-78.
  • Porcaro, R., Hanssen, A.G., Aalberg A., Langseth, M., 2004, Joining of aluminium using self-piercing riveting: testing, modelling and analysis, International Journal of Crashworthiness, 9(2), 141-154.
  • Porcaro, R., Hanssen, A.G., Langseth, M., Aalberg, A., 2006, The behaviour of a self-piercing riveted connection under quasi-static loading conditions, International Journal of Solids and Structures, 43/17,5110-5131.
  • Przybylski, W., Wojciechowski, J., Klaus A., Marre, M., Kleiner, M., 2008, Manufacturing of resistant joints by rolling for light tubular structures, Int. J. Adv. Manuf. Technol, 35, 924-934.
  • Rhodes, C.G., Mahoney, M.W., Bingel, W.H., Spurling, R.A., Bampton, C.C., 1997, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Materialia, 36/1, 69-75.
  • Schmidt, H., Hattel, J., Wert, J., 2004, An analytical model for the heat generation in friction stir welding, Modeling and Simulation in Materials Science and Engineering, 12, 143-157.
  • Sorina-Muller, J., Rettenmayr, M., Schneefeld, D., Roder, O., Fried, W., 2010, FEM simulation of the linear friction welding of titanium alloys, Computational Materials Science (In print).
  • Su, J.Q., Nelson, T.W., Mishra, R., Mahoney, M., 2003, Micro-structural investigation of friction stir welded 7050-T654 aluminium, Acta Materialia, 51,713-729.
  • Tang, D., Peng, Y., Li, D., 2009, An experimental and numerical study of the expansion forming of a thick-walled microgroove tube, Proc. IMechE Part C: J. Mechanical Engineering Science, 223, 689-697.
  • Vairis, A., Frost, M., 1998, High frequency linear friction welding of a titanium alloy, Wear, 217, 117-131.
  • Vairis, A., Frost, M., 1999, On the extrusion stage of linear friction welding of Ti6A14V, Material Science and Engineering, A271, 477-484.
  • Vairis, A., Frost, M., 2000, Modelling the linear friction welding of titanium blocks, Material Science and Engineering, A292, 8-17.
  • Vairis, A., Frost, M., 2006, Design and commissioning of a Friction Welding Machine, Materials and Manufacturing Processes, 21, 766-773.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0043-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.