PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow Stress Numerical Modeling for Large Strain Deformation in Magnesium

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Numeryczne modelowanie naprężenia odkształcającego w przypadku dużych odkształceń w stopie magnezu AZ 31
Języki publikacji
EN
Abstrakty
EN
An existing flow stress model proposed by Barnett was examined with as-cast homogenized AZ31 compression test data for a range of temperatures (250-450 centigrade) and strain rates (0.001-20s-1) from literature to verify the applicability of the model to direct extrusion of AZ31. The model was successful in predicting the hardening region of the flow curve but was unable to simulate the sizable softening component of the flow curve that as-cast homogenized magnesium alloys tend to have before failure. In order to correct this shortcoming, an empirical softening expression was developed with the same range of temperatures and strain rates. This modified flow stress model was then implemented into the finite element software package DEFORMTM 3-D to examine the hot-direct extrusion of hollow AZ31 automobile structural components fabricated using a port-hole die.
PL
Istniejący model naprężenia uplastyczniającego zaproponowany przez Barnetta został przeanalizowany używając danych z literatury dla odlanego i homogenizowanego stopu AZ31 poddanego próbom ściskania w zakresie temperatur od 250 do 450 centigrade i prędkości odkształcenia od 0.001 do 20 s-1. Analizę te przeprowadzono w celu zwerifikowania czy model ten nadaje się do zastosowania do procesu wyciskania współbieżnego stopu AZ31. Model ten sprawdził się w przewidywaniu krzywej umocnienia lecz nie był w stanie przewidzieć znaczącego zmiękczenia materiału typowego dla odlanego i homogenizowanego stopu magnezu tuz przed pęknięciem. W celu poprawienia tego limitującego faktu opracowano poprawkę dla tego zakresu temperatur i prędkości odkształcenia. Ten zmodyfikowany model naprężenia uplastyczniającego został następnie zastosowany w programie elementów skończonych DETORM™ 3-D w celu analizy wy ciskania współbieżnego na gorąco przez matryce mostkowa profilu ze stopu AZ31.
Wydawca
Rocznik
Strony
108--129
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Institute for Metal Forming, Lehigh University, Bethlehem, PA, USA, wzm2@lehigh.edu
Bibliografia
  • Agnew, S. R., Duygulu, O., 2005, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, International Journal of Plasticity, 21 (6), 1161-1193.
  • Barnett, M., Keshavarz, Z., Ma, X., 2006, A semianalytical Sachs model for the flow stress of a magnesium alloy, Metallurgical and Materials Transactions A, 37(7), 2283-2293.
  • Barnett, M. R., 2001, Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31, Journal of Light Metals, 1(3), 167-177.
  • Barnett, M. R., 2005, Texture, twinning and uniform elongation of wrought magnesium, Materials Science Forum, 495-497, 1079-1084.
  • Barnett, M. R., 2007a, Twinning and the ductility of magnesium alloys: Part I: "Tension" twins, Materials Science and Engineering: A, 464(1-2), 1-7.
  • Barnett, M. R., 2007b, Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins, Materials Science and Engineering: A, 464( 1 -2), 8-16.
  • Barnett, M. R., Davies, C. H. J., Ma, X., 2005, An analytical constitutive law for twinning dominated flow in magnesium, Scripta Materialia, 52(7), 627-632.
  • Barnett, M. R., Keshavarz, Z., Beer, A. G., Atwell, D., 2004, Influence of grain size on the compressive deformation of wrought Mg-3Al-lZn, Acta Materialia, 52(17), 5093-5103.
  • Beer, A. G., Barnett, M. R., 2007, Microstructural Development during Hot Working of Mg-3Al-lZn, Metallurgical and Materials Transactions A, 38(8), 1856-1867.
  • Brown, D. W., Agnew, S. R., Bourke, M. A. M., Holden, T. M., Vogel, S. C, Tome, C. N., 2005, Internal strain and texture evolution during deformation twinning in magnesium, Materials Science and Engineering: A, 399(1-2), 1-12.
  • Francillette, H., Gavrus, A., Lebensohn, R. A., 2003, A constitutive law for the mechanical behavior of Zr 702, Journal of Materials Processing Technology, 142(1), 43-51.
  • Gronostajski, Z., 2000, The constitutive equations for FEM analysis, Journal of Materials Processing Technology, 106(1-3), 40-44.
  • Guo, Q., Yan, H. G., Chen, Z. H., Zhang, H., 2006, Elevated temperature compression behaviour of MgAlZn alloys, Materials Science and Technology, 22, 725-729.
  • Hosford, W. F., 1993, The Mechanics of Crystals and Textured Polycrystals, Oxford University Press, New York.
  • Jain, A., Agnew, S. R., 2007, Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet, Materials Science and Engineering: .4,462(1-2), 29-36.
  • Jiang, L., Jonas, J. J., Luo, A. A., Sachdev, A. K., Godet, S., 2006, Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures, Scripta Materialia, 54(5), 771-775.
  • Jiang, L., Jonas, J. J., Luo, A. A., Sachdev, A. K., Godet, S., 2007a, Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy, Materials Science and Engineering: A, 445-446, 302-309.
  • Jiang, L., Jonas, J. J., Mishra, R. K., Luo, A. A., Sachdev, A. K., Godet, S., 2007b, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths, Acta Materialia, 55(11), 3899-3910.
  • Lapovok, R. Y., Barnett, M. R., Davies, C. H. J., 2004, Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation, Journal of Materials Processing Technology, 146(3), 408-414.
  • Lebensohn, R. A., Tome, C. N., 1993, Self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metallurgica et Materialia, 41(9), 2611-2624.
  • Levesque, J., Inal, K., Neale, K. W., Mishra, R. K., Luo, A. A. 2006, Numerical modelling of large strain deformation in magnesium, San Antonio, TX, United States, 239-243.
  • Levesque, J., Inal, K, Neale, K. W., Mishra, R. K., Luo, A. A., Jiang, L., 2007, Numerical modelling of large strain deformation in magnesium alloy AM30, Orlando, FL, United States, 11-16.
  • Li, L., Zhou, J., Duszczyk, J., 2006, Determination of a constitutive relationship for AZ31B magnesium alloy and validation through comparison between simulated and real extrusion, Journal of Materials Processing Technology, 172(3), 372-380.
  • Luo, A. A., Sachdev, A. K., 2007, Development of a new wrought magnesium-aluminum-manganese alloy AM30, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 38(6), 1184-1192.
  • Mathis, K., Trojanova, Z., Lukac, P., 2002, Hardening and softening in deformed magnesium alloys, Materials Science and Engineering A, 324(1-2), 141-144.
  • Mathis, K., Trojanova, Z., Lukac, P., Caceres, C. H., Lendvai, J., 2004, Modeling of hardening and softening processes in Mg alloys, Journal of Alloys and Compounds, 378(1-2), 176-179.
  • Meyers, M. A., Vohringer, O., Lubarda, V. A., 2001, The onset of twinning in metals: a constitutive description, Acta Materialia, 49(19), 4025-4039.
  • Remy, L., 1978, Kinetics of FCC Deformation Twinning and Its Relationship to Stress-Strain Behaviour, Acta Materialia, 26,443-451.
  • Schindler, I., Kliber, J., Boruta, J., 1996, Plastometric and computer modeling of deformation behavior of Nb-bearing HSLA-steel, Metalurgija, 35(4), 211-214.
  • Sheng, Z. Q., Shivpuri, R., 2006, Modeling flow stress of magnesium alloys at elevated temperature, Materials Science and Engineering: A, 419(1-2), 202-208.
  • Slooff, F. A., Zhou, J., Duszczyk, J., Katgerman, L., 2007, Constitutive Behavior of Wrought Magnesium Alloy AZ61, Magnesium Technology 2007 Orlando, FL; USA, 363-368.
  • Srivatsan, T. S., Wei, L., Chang, C. F., 1995, The tensile behaviour of rapidly solidified magnesium alloys, Journal of Materials Science, 30(7), 1832-1838.
  • Staroselsky, A., Anand, L., 1998, Inelastic deformation of poly-crystalline face centered cubic materials by slip and twinning, Journal of the Mechanics and Physics of Solids, 46(4), 671-696.
  • Staroselsky, A., Anand, L., 2003, A constitutive model for hep materials deforming by slip and twinning: application to magnesium alloy AZ31B, International Journal of Plasticity, 19(10), 1843-1864.
  • Tadano, Y., Kuroda, M., Noguchi, H., Shizawa, K., 2007, A polycrystalline analysis of hexagonal metal based on the homogenized method, Key Engineering Materials, 340-341 II, 1049-1054.
  • Takuda, H., Morishita, T., Kinoshita, T., Shirakawa, N., 2005, Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures, Journal of Materials Processing Technology, 164-165, 1258-1262.
  • Van Houtte, P., 2001, Fast calculation of average Taylor factors and Mandel spins for all possible strain modes, International Journal of Plasticity, 17(6), 807-818.
  • von Mises, R., 1928, Mechanik der plastischen Formänderung von Kristallen." Z. Angew. Math. Mech., 8, 161-185.
  • Wang, Y., Zeng, X., Ding, W., Luo, A. A., Sachdev, A. K., 2007, Development and Validation of Extrusion Limit Diagram for AZ31 and AM30 Magnesium Alloys, Materials Science Forum, 546-549, 327-332.
  • Wonsiewicz, B. C, Backofen, W. A., 1967, Plasticity of Magnesium Crystals, AIME Met. Soc. Trans., 239(9), 1422-1431.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0043-0004
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.