PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Possibility to reduce knock combustion by EGR in the SI test engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of modelling thermal cycle of internal combustion engine including exhaust gas recirculation. The test engine can not achieve the optimum parameters of work due to occurrence of the knock combustion. The influence of EGR on the limits of the knock occurrence in the engine was studied. It turned out that few percent of exhaust gases in the fresh charge effectively shifts the knock limit to higher ignition advance angles. The values of the limit ignition timing for the test engine was determined in order to avoid combustion knock. Larger share of EGR caused too much slowing the spread of the flame inside the combustion chamber of the test engine. EGR at constant angle of ignition was very effective in limiting the content of NO in the exhaust, but on the other hand it has an adverse effect on the engine parameters. The engine operate with exhaust gas recirculation in order to obtain the possible best parameters the ignition timing should be optimized. However, that with increasing values of the thermodynamic parameters of thermal cycle of engine increased NO content in the exhaust. The paper presents results of modelling thermal cycle of IC engine, including exhaust gas recirculation and knock combustion. The object of researches was the S320ER spark ignition internal combustion engine supplied with petrol. The engine was operated at a constant speed of1000 rpm. Modelling of the thermal cycle of the test SI engine in the FIRE software was carried out.
Twórcy
autor
  • Czestochowa University of Technology Institute of Internal Combustion Engines and Control Engineering Armii Krajowej Street 21, 42-201 Częstochowa tel.: 34 3250555, fax. 34 3250555, tutak@imc.pcz.czest.pl
Bibliografia
  • [1] AVL FIRE, VERSION 2009ICE, Physics & Chemistry. Combustion, Emission, Spray, Wallfilm, Users Guide, 2009.
  • [2] Amr, I., Saiful, B., Optimization of a natural gas SI engine employing EGR strategy using a two-zone combustion model, Fuel 87, 1824–1834, 2008.
  • [3] Baumgarten, C., Mixture Formation in Internal Combustion Engines, Springer-Verlag Berlin Heidelberg 2006.
  • [4] Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill, 1988
  • [5] Cha, J., Kwon, J., Cho, Y., Park, S., The Effect of Exhaust Gas Recirculation (EGR) on Combustion Stability, Engine Performance and Exhaust Emissions in a Gasoline Engine, KSME International Journal, Vol. 15, No. 10, pp. 1442 -1450, 2001.
  • [6] Szwaja, S, Jamrozik, A., Analysis of Combustion Knock in the SI Engine, SILNIKI SPALINOWE/Combustion Engines, Mixture Formation Ignition & Combustion, Nr 2009-SC2, June 2009.
  • [7] Colin, O., Benkenida, A., The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology, 2004.
  • [8] Neame, G. R, Gardiner, D. P, Mallory, R. W, et al., Improving the fuel economy of stoichiometrically fuelled SI Engines by means of EGR and enhanced ignition – a comparison of gasoline, Methanol and natural gas, SAE paper 952376, 1995.
  • [9] Sasaki, S., Sawada, D., Ueda, T., Sami, H., Effects of EGR on direct injection gasoline engine, JSAE Review 19 (1998) 223-228.
  • [10] Foin, C., Nishiwaki, K., Yoshihara, Y., A diagnostic bi-zonal combustion model for the study of knock in spark-ignition engines, JSAE Review 20, 401-406, 2009.
  • [11] Rahmounia, C., Brecqb, G., Tazeroutb, M., Le Correb, O., Knock rating of gaseous fuels in a single cylinder spark ignition engine, Fuel 83, 327–336, 2004.
  • [12] Szwaja, S., Bhandarya, K. R., Nabera, J. D., Comparisons of hydrogen and gasoline combustion knock in a spark ignition engine, International Journal of Hydrogen Energy, Vol. 32, Is. 18, pp. 5076-5087, 2007.
  • [13] Chun, K. M., Heywood, J. B., Keck, J. C., Prediction of knock occurrence in a spark-ignition engine, Twenty-Second Symposium (International) on Combustion/The Combustion Institute, pp. 455-463, 1988.
  • [14] Kirsch, L. J., Quinn, C. P., A fundamentally based model of knock in the gasoline engine. Symposium (International) on Combustion, Vol. 16, Is. 1, pp. 233-244, 1977.
  • [15] Sazhinaa, E. M., Sazhin, S. S., Heikal, M. R., Marooney, C. J., The Shell autoignition model:applications to gasoline and diesel fuels, Fuel 78, 389–401, 1999.
  • [16] Ollivier, E., Bellettre, J., Tazerout, M., Roy, G., Detection of knock occurrence in a gas SI engine from a heat transfer analysis, Energy Conversion and Management 47, 879–893, 2006.
  • [17] Szwaja, S., Combustion Knock - Heat Release Rate Correlation of a Hydrogen Fueled IC Engine Work Cycles, 9th International Conference on Heat Engines and Environmenta Protection. Proceedings. Balatonfured, pp. 83-88, Hangary 2009.
  • [18] Szwaja, S., Hydrogen Rich Gases Combustion in the IC Engine, Journal of KONES Powertrain and Transport, Vol. 16, No. 4, pp. 447-454, 2009.
  • [19] Cupia􀃡, K., Szwaja, S., Producer Gas Combustion in the Internal Combustion Engine, Combustion Engines, R. 49, No. 2 (141), pp. 27-32, 2010.
  • [20] Naber, J. D., Szwaja, S., Statistical approach to characterize combustion knock in the hydrogen fuelled SI engine, Journal of KONES, Warsaw 2007.
  • [21] Szwaja, S., Time-Frequency Representation of Combustion Knock in an Internal Combustion Engine, Silniki Spalinowe, R. 48, Nr SC2, s. 306-315, 2009.
  • [22] Jamrozik, A., Tutak, W., Modelling of combustion process in the gas test engine. Perspective Technologies and Methods in Mems Design, MEMSTEch, Lviv - Polyana, Ukraine, pp. 14-17, 2010.
  • [23] Tutak, W., Jamrozik, A., Modelling of thermal cycle of gas engine using AVL FIRE software, Combustion Enginers, R. 49, No.2 (141), pp.105-113, 2010.
  • [24] Tutak, W., Jamrozik, A., Kociszewski, A., Improved Emission Characteristics of SI Test Engine by EGR, Proceedings of VIIthInternational Conference in MEMS Design, MEMSTECH’2011, pp.101-103 Lviv-Polyana 2011.
  • [25] Tutak, W., Jamrozik, A., Kociszewski, A., Three Dimensional Modelling of Combustion Process in SI Engine with Exhaust Gas Recirculation, Proceedings of 10thInternational Conference on Heat Engines and Environmental Protection, pp. 203-208. Balatonfüred, Hungary 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0040-0060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.