PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Knock and combustion rate interaction in a hydrogen fuelled combustion engine

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes correlation between combustion knock intensity and combustion rate calculated as the heat release rate from combustion pressure traces of a hydrogen fuelled spark ignited engine. Unlike a gasoline spark ignited (SI) engine, the hydrogen fuelled engine can easily generate knock during combustion at working conditions similar to a gasoline engine. However, the hydrogen knock does not necessarily come from hydrogen auto-ignition at the end phase of spark-controlled combustion process as it is typical at the gasoline fuelled engine. The phenomenon of hydrogen knock significantly differs from the gasoline knock due to different combustion mechanisms and different fuel thermo-chemical properties. The knock can be generated during hydrogen combustion itself as result of combustion instabilities. Intensity of this knock, expressed here by intensity of combustion pressure fluctuations, is several times lower in comparison with the combustion knock by fuel self-ignition process. This "light knock" is a matter of this paper. The tests of hydrogen combustion in the IC engine has been conducted at air to hydrogen stoichiometric ratio at various compression ratios with spark timing sweep from -10 to 4 crank angle degrees referring to top dead centre of the engine piston. Obtained results show, that there is a positive correlation between the knock intensity and the combustion rate. This correlation is particularly observed at tests taken on the engine with compression ratio of 10. The conclusions should provide good premises for combustion knock modelling and its prediction.
Słowa kluczowe
Twórcy
autor
  • Czestochowa University of Technology Dabrowskiego Street 69, 42-200 Czestochowa, Poland tel.: 48 34 3250555, fax: +48 34 3250555, szwaja@imtits.pcz.czest.pl
Bibliografia
  • [1] Heywood, J. B., Internal Combustion Engines Fundamentals, McGraw Hill Inc, 1988.
  • [2] Szwaja, S., Geneza pulsacji ciśnienia spalania w silniku tłokowym, benzynowym i wodorowym, Archiwum Spalania, 10, 1-2, pp. 27-49, 2010.
  • [3] Li, H., Karim, G. A., Knock in Spark Ignition Hydrogen Engines, Int. J. of Hydrogen Energy 29, pp. 859-865, 2004.
  • [4] Szwaja, S., Bhandary, K., Naber J. D., Comparison of Hydrogen and Gasoline Combustion Knock in a Spark Ignition Engine, Int. J. of Hydrogen Energy, Vol. 32/18, pp. 5076-5087, 2007.
  • [5] Naber, J. D., Blough, J. R., Frankowski, D., Goble, M., Szpytman JE. Analysis of Combustion Knock Metrics in Spark-Ignition Engines, SAE Transactions Journal of Engines, V115, pp. 223-243, 2007.
  • [6] Naber, J.D., Szwaja, S., Statistical Approach To Characterise Combustion Knock In The Hydrogen Fuelled Si Engine, Journal of KONES Powertrain and Transport, Vol. 14, No. 3, pp. 443-450, Warsaw 2007.
  • [7] Nande, A. M., Szwaja, S., Naber, J. D., Impact of EGR on combustion processes in a hydrogen fuelled SI engine, SAE Paper No. 2008-01-1039, 2008.
  • [8] Jamrozik, A., Modelling of two-stage combustion process in SI engine with prechamber, MEMSTECH 2009, Perspective Technologies and Methods in MEMS Design, pp. 13-16, Lviv-Polyana 2009.
  • [9] Jamrozik, A., Numerical analysis of mixture preparation and combustion in SI engine with prechamber, Commission of Motorization Polish Academy of Science Cracow Branch. No. 33-34, pp. 143-150, Cracow 2008.
  • [10] Jamrozik, A., Tutak, W., Kociszewski, A., Sosnowski, M., Numerical analysis of influence of prechamber geometry in IC engine with two-stage combustion system on engine work cycle parameters, Journal of KONES Powertrain and Transport, Vol. 13, No. 2, pp. 133-142, Warsaw 2006.
  • [11] Szwaja, S., Naber, J.D., Impact of leaning hydrogen-air mixtures on engine combustion knock, Journal of KONES Powertrain and Transport, Vol. 15, No. 2, pp. 483-492, Warsaw 2008.
  • [12] Szwaja, S., Naber, J.D., Exhaust Gas Recirculation Strategy In The Hydrogen SI Engine, Journal of KONES Powertrain and Transport, Vol. 14, No. 2, pp. 457-464, Warsaw 2007.
  • [13] Szwaja, S., Jamrozik, A., Analysis of combustion knock in the SI engine, Combustion Engines, Mixture Formation Ignition and Combustion, No. 2009-SC2, pp. 128-135, June 2009.
  • [14] Jamrozik, A., Tutak, W., Modelling of combustion process in the gas test engine, Proceedings of the VI-th International Conference MEMSTECH 2010, Perspective Technologies and Methods in MEMS Design, pp. 101-103, Lviv – Polyana 2010.
  • [15] Tutak, W., Jamrozik, A., Modelling of the thermal cycle of gas engine using AVL FIRE Software, COMBUSTION ENGINES, No. 2/2010 (141), pp. 105-113, 2010.
  • [16] Tutak, W., Jamrozik, A., Kociszewski, A., Three dimensional modelling of combustion process in SI engine with Exhaust Gas Recirculation, 10th Jubilee International Conference on Heat Engines and Environmental Protection, (HEEP 2011), pp. 203-208, Balatonfured, Hungary 2011.
  • [17] Jamrozik, A., Modelling of nitric oxide formation process in combustion chamber of SI gas engine, GAS ENGINES 2006 – Design – Research – Development – Renewable. Czestochowa-Hucisko 2006.
  • [18] Kociszewski, A., Numerical modelling of combustion in SI engine fuelled with methane, COMBUSTION ENGINES, 4/2009 (139), p. 45-54, Fig. 16, ref. 19, 2009
  • [19] Kociszewski, A., Three-dimensional modelling and experiment on combustion in multipoint spark ignition engine, MEMSTECH’2009, 22-24 MEMSTECH 2009, V-th International Conference Perspective Technologies and Methods in Mems Design, 22 - 24 April 2009, Polyana-Svalyava (Zakarpattya), UKRAINE, p. 20-23, Fig. 15, ref. 11, 2009
  • [20] Moses, E., Yarin, A. L., On Knocking Prediction in Spark Ignition Engines, Combustion and Flame 101, pp. 239-261, 1995.
  • [21] Tutak, W., Jamrozik, A., Numerical analysis of some parameters of gas engine, Commission of Motorization and Power Industry in Agriculture PAN, Vol. X, pp. 491-502, Lublin 2010.
  • [22] Jamrozik, A., Kociszewski, A., Tutak, W., Measurements accuracy of internal combustion engine indication, PAK 2009 nr 12, pp. 1030-1036, 2009.
  • [23] Jamrozik, A., Kociszewski, A., Tutak, W., Indication errors of engine with two stage combustion system, Journal of KONES Powertrain and Transport, Vol. 16, No. 4, pp. 179-193, Warsaw 2009.
  • [24] Cupiał, K., Tutak, W., Jamrozik, A., Kociszewski A., The accuracy of modelling of the thermal cycle of a self-ignition engine, COMBUSTION ENGINES, No. 1/2011 (144), pp. 37-48, 2011.
  • [25] Naber, J. D., Szpytman, J. E., Bradley, E., Target Based Rapid Prototyping Control System for Engine Research, SAE Transactions Journal of Passenger Cars, V115 pp. 395-406, 2007.
  • [26] Naber, J. D., Szwaja, S., Statistical Approach To Characterise Combustion Knock In The Hydrogen Fuelled SI Engine, Journal of KONES – Powertrain and Transport, Vol. 14, No.3, pp. 443-450, Warsaw 2007.
  • [27] Grab-Rogaliński, K., Szwaja, S., Hydrogen-diesel co-combustion anomalies in a CI engine, Journal of KONES Powertrain and Transport, Vol. 15, No. 2, pp. 109-118, Warsaw 2008.
  • [28] Borecki, R., Szwaja, S., Pyrc, M., Dual-fuel hydrogen-diesel compression ignition engine, Journal of KONES Powertrain and Transport, Vol. 15, No. 2, pp. 49-56, Warsaw 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0040-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.