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Abstract 

Efficient functioning of slide micro-bearings systems especially HDD micro-bearing require to recognition and 
modulation of the proper values of the friction forces and wear during the exploitation time. Possibility of 
modulation and control of mentioned problem belong to the artificial intelligence of HDD micro-bearing. This 
paper presents the some applications of summation equations regard to the calculation prognosis of micro-bearing 
parameters such as friction forces, ,friction coefficients and wear .Summation equations are presented a new form 
of difference and recurrence equations where the unknown function occurs as the argument of the reciprocal 
unified operator of summation (UOS) Presented problem describes not continuous relations hence determines the 
mathematical and numerical solutions in discrete spaces. Properly in the case of continuous functions, the 
mentioned summation equations have the same meaning as integral equations. This paper will present the 
transformation method of summation equations to recurrent equations. Recurrent equations for discrete function 
correspond to differential equations for the continuous function. The Application of presented theory in this paper 
contains the numerical solutions referring the wear values of HDD bearing system in the indicated period of 
operating time. 
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1. General remarks about summation and recurrence equations  
 

In this paper the summation equations are applied for solving the problems connected with the 
wear prognosis during the HDD -microbearing Seagate Barracuda and Computer Ventilator 
Xilence Case Fan exploitation [1, 12].  

Up to now the information on summation equations and their mechanical applications is very 
scarce. Many more papers have been published on difference equations. Those mathematicians, 
physicists and engineers who deal with applied mathematics [3-10] became interested in the early 
1960s in the new field: the theory of discrete solutions. This interest became more intense together 
with a large-scale progress: first in the technology of digital machines and further in the computing 
technique. The quantity of operations performed was no longer important; what matters is the time 
of the performance of operations on computers with increasing powers as well as the effectiveness 
in the convergence process of computational procedures conducted. A number of methods were 
then put to use for the solution of equations and systems of recurrence and summation equations. 
These methods could be used and the goals could be achieved in a numerical manner with the 
application of computers.  

The result of an increased interest in recurrence and summation equations is among others the 
fact that differential equations can be simulated by means of summation and recurrence equations, 
and some linear summation and recurrence equations can be reduced to those differential equations 
that are equivalent with respect to solutions to recurrence equations.  

It is to be noted that those phenomena are described with summation equations whose results 
or values change in a discrete manner. A completely different description of phenomena with the 
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aid of differential equations concerns dependencies and values with continuous changes, which as 
we know are a large approximation of the surrounding reality [4, 11].  

Owing to a constant growth of the potential of computers, a development is being observed of 
those methods that are approximate in the area of partial differential equations. In this research 
area, recurrence equations are becoming more and more widely applied. Initially, differential 
methods were developed. Further, the methods by Runge-Kutta, W. Ritz and B. G. Galerkin were 
created together with many other analytical and numerical methods, where the solutions of 
recurrence equations were required [9-11]. Another MES finite elements method is to be noted. 
The advantage of this method is obtaining solutions of differential or recurrence equations in areas 
with very complex shapes. A disadvantage of this method is obtaining approximate solutions 
which do not strictly satisfy the equation which governs the process, or its satisfaction with a very 
low degree of the shape function. The result of an improvement of the MES method with the use 
of recurrence and summation equations is an application of E. Trefftz functions as base functions 
in the MES method [7]. 
 
2. Definition and some properties of the unified operator of summation 

 
Let S be a general operator of summation. Such operator generalizes up to now needed 

difference operator , and its reciprocal form i.e. operator denoted by 1.  
We define general operator S and its properties in the following form [5, 6]: 

 , (1) 11,)(),()()( 1
1
0

1
0
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we denote: 
fn - Complex functions defined on the natural numbers,  

 - basis of the unified operator of summation S, 
 - Complex number of the complex variable,  

k=1 - first rank as an upper index of the operator of unified summation.  kS
The operation  on the function fn is known as the unified summation. The particular case of 

operation S presented by the relation (1) for =0, has the form  and can be denoted in the form 
S0 and called as unitary translation operator (UTO). Operation of the UTO on the function fn was 
univocal defined by the Eq. (1).  

mS
1
0S

Unified operation (1) for = +1, =z describes a new form of summation. Both forms are as 

follows:  At first we show some particular properties of UTO i.e. for =0. It is easy to see 
that the following operation is true: 

.S,S 1
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If the operator S has rank k, defined in the following recurrence form:  
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kSSnf
kSnfnfS ,  (3) 

then is easy to proof the following dependences:  
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From equations: (4), follows the multiplicative property of the UTO. Let be k=0. In this case 
the unitary translation operator has order zero. For arbitrary natural number k the operator has 
order k. The UTO of the order k, is linear i.e. is simultaneously additively and homogeneity, hence 

, 
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we can write the following equation [5, 6]:  

  (5) ),f(S)f(SffS n
k
0n

k
0nn

k
0

where ,  are two arbitrary constants independent of n. Moreover the UTO for two arbitrary 
natural orders s and k satisfies the following iterative summation law: 

  (6) ).f(S)f(SS n
sk

0n
s
0

k
0

The properties from (3) to (6) refer to the UTO of the rank k where k=0,1,2,3,… Now we go to 
define the recurrent form of UOS of order k:  

 ,...3,2,111)(,)(0 kfornf
kSSnf

kSnfnfS   (7) 

From the definition (7) implies the following iterative equations:  

 ,  (8) ,...3,2,11
0)( kfornf

k
Snf

kS

which is easy to proof in the mathematical induction way. 
 
3. Definition and some properties of the reciprocal unified operator of summation 

 
Reciprocal UOS regarding to the unified operator of summation defined in Eq.(1) is denoted by 

the following description:  

  (9) (...).S 1

Reciprocal unified operator of summation will be defined in the following form: 

  ,fFSbecause,FfS nn
1

nn
1   (10) 

where Fn, fn are the functions determined for the natural numbers n=1,2,3,…  
Reciprocal unified operator of summation is denoted by the upper index ( 1) and is not always 

univocal. To explain such property we define the following 
 
LEMMA 1 

If function Fn presents a result of operation of reciprocal unified operator of summation  on 
the function fn, then each function: 

1S

 ,CF n
n  (11) 

is also a consequence of the operation of reciprocal UOS on the function fn where C is the 
arbitrary constant (independent of n). 
 
PROOF OF LEMMA 1 
 

Let the UOS operates on the expression (11) and we need its linear and multiplicative 
properties defined by the Eqs. (4), (5). After operation we obtain: 
  .11111

n
nn

n
n

n
n

n fCCFSCSFSCFS  (12) 

Calculation (12) completes the proof of the Lemma 1. Now we show some selected characteristic 
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properties of reciprocal UOS. At first we assume that the following operations: ,...,... 11 SS with 

the same basis  are for the two functions fn, Fn reciprocal in following sense:  

 
.CFFSS,ffSS n

nn
11

nn
11  (13) 

Eqs. (13) follow from the definition (10) and are presented the law of rank reduction. 
 
4. Characteristic examples of reciprocal operator of summation 

 
In Tab. 1 we show some characteristic reciprocal transformations. 

 
Tab. 1. Characteristics reciprocal UOS transformations for arbitrary constants K , a, arbitrary summation constants 

C and natural numbers k, n 
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5. Linear summation equations with constant coefficients 

 
This section is limited to the consideration of summation equations of first and second kind 

only. At first we consider the following 
THEOREM 1 
 

A non-homogeneous second order summation equation of the second and first kind with 
constant coefficients: 

 , (14) Afa)f(Sa)f(Sa n0n
1

11n
2

12

 , (15)  Afa)f(Sa)f(Sa n0n
1
11n

2
12

where: a1, a2, a0, A are real numbers that are independent from n, can always be transformed to 
equivalent linear second order recurrent equations with constant coefficients. 
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PROOF OF THEOREM 1. 
 

A summation equation is equivalent to the recurrence equation if both equations have the same 
particular solutions. At first we assume the summation equation of the first kind (14). On both 

sides of Eq.(14), we operate with a unified operator of summation  with basis one, hence we 
obtain: 

1
1S

 .AAffafa)f(Sa n1n0n1n
1

12   (16) 

On both sides of Eq.(16), we again operate with a unified operator of summation  with basis 
one, thus after ordering we obtain finally: 

1
1S

 .A4faaafaa2fa n2101n102n0   (17) 

Equation (17) obtained presents a linear, non-homogeneous recurrent equation of the second 
order with constant coefficients. Symbol fn denotes the discrete unknown function. 

Now we assume the summation equation of the second kind (15). On both sides of Eq. (15), we 

operate with the unified operator of summation  with basis minus one, hence we obtain: 
1

1S

 .AAffafa)f(Sa n1n0n1n
1
12  (18) 

On both sides of Eq.(18), we again operate with the unified operator of summation  with 
basis minus one, thus after ordering we obtain finally: 

1
1S

 .0faaafaa2fa n2101n102n0   (19) 

Eq. (19) presents a linear homogeneous second order recurrent equation with constant 
coefficients. Symbol fn describes the discrete unknown function. Expressions presented in 
Eqs.(17), (19) completes the proof of Theorem 1. 

It can be easily seen that an analytical solution of n-order linear recurrent equations with 
constant coefficients is always possible and feasible. Such problems will be applied in the next 
intersection. 

It is easy to prove that if summation equation has variable coefficients in the form of 
polynomials, then we can transform such equation to the recurrence equation too. 
 
6. Uniform mega- algorithm of solutions for ordinary recurrence equations 

 
The results of applied mathematical achievements are presented in the form of Uniform Mega- 

Algorithm elaboration to linear independent particular solutions  determination of 
ordinary, linear n-order homogeneous and non-homogeneous following difference or recurrent 
equation [5]: 

]n[
n

]1[
n z,...,z

 ),()()()(....)()( 0112211 nbznpznpznpznpznp nnnknkknk  (20) 

where coefficients pj, b for j=0, 1, …, k depend on variable n in neighborhood of regular or non-
regular points.The linear independent particular solutions of recurrent equation are presented in the 
sequence form and are satisfying the imposed boundary conditions. 

If coefficients pj are independent of n and b equals zero then recurrent equation (20) has the 
following general solution [5]: 

 , Csm summation constants. (21)  m
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r
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sn nCz
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Symbol  for s=1,2,3,…,r; r k denotes the successive different, roots of characteristic 
algebraic equation:  

s

  (22) ,0pp...pp 01
1k

1k
k

k

with multiple s attributed to the roots s whereas the sum of manifolds of roots is equal to the 
order of the recurrence equation namely: 

 1+ 2+…+ r 1+ r=k.  (23) 

COROLLARY. 1 
Linear, non-homogeneous, first order recurrent equations with variable coefficient an and 

variable free term bn: 

 ,buau nnn1n  (24) 

has the following general solution: 
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,Cu1  
where: 
un - unknown discrete function,  
C - arbitrary constant, indexes j and k belong to the set 1,2,…,n 1 whereas s=1,2,…,k. 
 
ANALYTICAL PROOF OF COROLLARY 1. 
 

The proof is presented in [5]. 
 
7. Wear prognosis for HDD bearing system 
 
EXAMPLE 7.1. 

Differences of the surface wear of the some HDD micro-bearing system between the next and 
foregoing year of operating time during the succeeding years numbered by n=1,2,3... are as 
follows: 

 ,...3,2,1nfor,ffF n1nn   (26) 

Determine the differences of wear Fn if we know, that the wear (increases of journal diameter) 

in succeeding years are described by the sequence nf  for n=1,2,… . The wear in each year fn, 
increased by wear difference function g(Fn)=BFn, equal to the balance of the journal diameter 

function . For this problem are imposed boundary condition F1=f2 f1 in pm describing 
the difference of wear between second and first years of the exploitation. Value F1 denotes 
measured increases of journal diameter value in the first two year of exploitation. Experimental 
parameters A[pm], B, D depend on material properties, exploitation time during the year, rotation 
velocity of the journal respectively.  

nAD)n(h

 
SOLUTION OF EXAMPLE 7.1 

From Eq.(26) follows, that wear surface we can present in the form: 

 .f]fS[S)ff(SFS nn
1
1

1
1n1n

1
1n

1
1  (27) 
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The solved problem we can describe by the following, non-homogeneous, first order 
summation equation with variable free term (compare intersection 5): 

   (28) ,...3,2,1nforDABFFS n
nn

1
1

The unknown of his summation equation is the sequence with the general term Fn. 

Imposing the UOS operator  on the both sides of Eq. (28), we obtain: 
1
1S

  (29) ,...3,2,1nfor)D(SA)F(BSF n1
1n

1
1n

After simple and known operations performed in Eq. (29) we attain the following, non-
homogeneous, first order recurrence equation with constant coefficient and variable free term: 

 
.D

B
)1D(Ab,a,...,3,2,1nforbFaF n

nB
B1

nnnn1n  (30) 

It is easy to see, that the recurrence equation (30) has the form (24). Utilizing the solution (25), 
we can write general solution of the equation (30) in following form: 

 
,CF,...3,2nfor,D

B
B11

B
)1D(A

B
B1)1(CF 1
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1n
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where C denotes the arbitrary summation constant. After terms ordering Eq.(31) attain the form:  

 
.CF,...3,2nfor,
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B
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1B
)1D(A

B
1BCF 1

1n

1k

kn1n
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Taking into account the sum of n 1 terms of geometrical sequence on the r.h.s. of Eq. (32), we 
obtain: 

 

,
)1BDB(

)1D(AX,...3,2,1nfor,1
1B

DBD
B

1B
B

1BCF
1n1n1n

n  (33a) 

After simple transformations Eq. (33a) tends finally to the form: 

 
.,...,3,2,1nfor,DXDC

B
1BF n

1n

n  (33b) 

Imposing the boundary condition (30) for n=1 on the general solution (33b), we obtain C=F1.  
Hence, the sequence of the differences of wear surface in succeeding years, has the following 

form: 

 
,...3,2,1nfor,DXDF

B
1BF n

1

1n

n
  

(34) 

After N-years the wear (i.e. decreasing of the journal diameter) attain the value: 

 

.
1D
1DDX1

B
1BXDFB1F

NN

1

N

1n
n

 (35) 

In particular calculations we assume: A=1400pm, B=3/2, D=3/2, F1=843pm. Hence we obtain 
X=400pm and the particular solution (34) has the form: 

 
,...3,2,1nfor

2
3pm400

3
pm243F

n
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From the formula (34) follows, that in succeeding years the differences of wear surfaces for the 
considered HDD micro-bearing system, between the each next and foregoing year, are as follows 
in nano-meters: 

 
 (37) ,...nm040.3,nm034.2,nm377.1,nm981.0,nm843.0F 1nn

From Eq. (35) follows, that after N=10 years exploitation the journal diameter decreases 
68.32nm. 
 
8. Final results 

 
Corollary 1. Taking into account influences of variable sometimes mutually depended 

impulses on the behavior of HDD slide journal bearing system, we can describe how the design 
variables of mentioned bearings affect the bearing stiffness and the natural frequencies of the 
bearing shaft to obtain the optimum wear values during the exploitation time. 

Corollary 2. This research also shows that the supporting structure which includes the stator, 
housing and base plate plays an important role in determining the natural frequencies and mode 
shapes of slide journal bearing system. 
 
9. Conclusions 

 
The construction of a certain unified mega-algorithm of summation equations, which 

generalizes the difference operators that have been used so far, and in particular cases also 
describes certain new forms of summation and differentiation, which constitute a useful tool for 
the solution of the calculation problems applied for the wear prognosis of HDD micro-bearings.  
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