PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of butanol blend on in-cylinder combustion process. Part 1: Spark ignition engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The addition of alcohol to conventional hydrocarbon fuels for a spark-ignition engine can increase the fuel octane rating and the power for a given engine displacement and compression ratio. In this work, the influence of butanol addition to gasoline in a port fuel-injection, spark ignition engine was investigated. The experiments were realized in a single cylinder ported fuel injection SI engine with an external boosting device. The optical accessible engine was equipped with the head of commercial SI turbocharged engine with the same geometrical specifications (bore, stroke, compression ratio) as the research engine. The effect on the spark ignition combustion process of 40% n-butanol blended in volume with gasoline was investigated by cycle resolved visualization. The engine worked at low speed, medium boosting and wide open throttle. Changes in spark timing and fuel injection phasing were considered in order to investigate normal and abnormal combustion. Comparisons between the parameters related to the flame luminosity and to the pressure signals were performed. The duration of injection for butanol blend was increased to obtain stoichiometric mixture. In open valve injection condition, the fuel deposits on intake manifold and piston surfaces decreased, allowing a reduction in fuel consumption. Butanol blend granted the performance levels of gasoline and in open valve injection allowed to minimize the abnormal combustion effects and the formation of ultrafine carbonaceous particles.
Twórcy
autor
autor
autor
autor
Bibliografia
  • [1] Harvey, B. G., Meylemans, H. A., The role of butanol in the development of sustainable fuel technologies, J. Chem. Technol. Biotechnol, Vol. 86, pp. 2–9, 2011.
  • [2] Ezeji, T. C., Qureshi, N., Blaschek, H. P., Bioproduction of butanol from biomass: from genes to bioreactors, Current Opinion in Biotechnology, Vol. 18, 3, pp. 220–227, 2007.
  • [3] Angenent, L. T., Energy biotechnology: beyond the general lignocellulose-to-ethanol pathway, Current Opinion in Biotechnology, Vol. 18, pp.191–192, 2007.
  • [4] Yang, H., Yan, R., Chen, H., Zheng, C., Lee, D. H., Liang, D. T., In-depth investigation of biomass pyrolysis based on three major components: hemicellulose, cellulose and lignin, Energy Fuels, Vol. 20, pp. 388–393, 2006.
  • [5] Veloo, P. S., Wang, Y. L., Egolfopoulos, F. N., Westbrook, C. K., A comparative experimental and computational study of methanol, ethanol, and n-butanol flames, Combustion and Flame, Vol. 157, 10, pp. 1989-2004, 2010.
  • [6] Ramey, D. E., Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria, US Patent 5753474, 1998.
  • [7] Yacoub, Y., Bara, R., Gautam, M., The performance and emission characteristics of C1–C5 alcohol–gasoline blends with matched oxygen content in a single cylinder spark ignition engine, Proc Inst Mech Eng A – Power Energy, Vol. 212, pp. 363–379, 1998.
  • [8] Gautam, M., Martin, D. W., Emission characteristics of higher-alcohol/gasoline blends, Proc Inst Mech Eng, Vol. 214A, pp. 165–182, 2000.
  • [9] Gautam, M., Martin, D. W., Combustion characteristics of higher-alcohol/gasoline blends, Proc Inst Mech Eng, Vol. 214A, pp.497–511, 2000.
  • [10] Dernotte, J., Mounaim-Rousselle, C., Halter, F., Seers, P., Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine, Oil & Gas Science and Technology – Rev. IFP, Vol. 65 (2), pp. 345-351, 2010.
  • [11] Szwaja, S., Naber, J. D., Combustion of n-butanol in a spark-ignition IC engine, Fuel, Vol. 89, pp. 1573–1582, 2010.
  • [12] Alasfour, F. N., NOx emission from a spark-ignition engine using 30% iso-butanol – gasoline blend: Part 1: Preheating inlet air, Appl. Therm. Eng., Vol. 18 (5), pp. 245-256, 1998.
  • [13] Alasfour, F. N., NOx emission from a spark-ignition engine using 30% iso-butanol – gasoline blend: Part 2: Ignition timing, Appl. Therm. Eng., Vol. 18 (8), pp. 609-618, 1998.
  • [14] Broustail, G., Seers, P., Halter, F., Moréac, G., Mounaim-Rousselle, C., Experimental determination of laminar burning velocity for butanol and ethanol iso-octane blends, Fuel, Vol. 90, pp. 1–6, 2011.
  • [15] Yang, J., Wang, Y., Feng, R., The Performance Analysis of an Engine Fueled with Butanol-Gasoline Blend, Paper Number: 2011-01-1191, 2011.
  • [16] Heywood, J. B., Internal Combustion Engine Fundamentals, New York: McGraw-Hill, 1988.
  • [17] Brunt, M. F., Pond, C. R., Biundo J., Gasoline Engine Knock Analysis using Cylinder Pressure Data, SAE Paper No 980896, 1998.
  • [18] Mittal, V., Revier, B. M., Heywood, J. B., Phenomena that determine knock onset in sparkignition engines, SAE Paper No. 2007-01-0007, 2007.
  • [19] Merola, S. S., Sementa, P., Tornatore, C., Vaglieco, B. M., Knocking diagnostics in the combustion chamber of boosted port fuel injection spark ignition optical engine, International Journal of Vehicle Design, Vol. 49 (1-3), pp.70–90, 2009.
  • [20] Merola, S. S., Sementa, P., Tornatore, C., Experiments on knocking and abnormal combustion through optical diagnostics in a boosted spark ignition port fuel injection engine, International Journal of Automotive Technology, Vol. 12, No. 1, pp. 93-101, 2011.
  • [21] Begg, S., Hindle, M., Cowell, T., Heikal, M., Low intake valve lift in a port fuel-injected engine Energy, the International Journal, Vol. 34 (12), pp. 2042-2050, 2008.
  • [22] Behnia, M., Milton, B. E., Fundamentals of fuel film formation and motion in SI engine induction systems, Energy Conv. and Manag., Vol. 42(15-17), pp. 1751-1768, 2001.
  • [23] Costanzo, V. S., Heywood, J. B., Mixture Preparation Mechanisms in a Port Fuel Injected Engine, SAE Technical Paper n. 2005-01-2080, 2005.
  • [24] Gold, M. R., Arcoumanis, C., Whitelaw, J. H., Gaade, J., Wallace, S., Mixture Preparation Strategies in an Optical Four-Valve Port-Injected Gasoline Engine, Int. J. of Engine Research, Vol. 1(1), pp. 41-56, 2000.
  • [25] Merola, S. S, Sementa, P, Tornatore, C., Vaglieco, B. M., Effect of Fuel Injection Strategies on the Combustion Process in a PFI Boosted SI Engine, Int. J. of Automotive Technology, Vol. 10(50), pp. 545-553, 2009.
  • [26] Merola, S. S, Sementa, P, Tornatore, C., Vaglieco, B. M., Effect of Injection Phasing on Valves and Chamber Fuel Deposition Burning in a PFI Boosted Spark-Ignition Engine, SAE International Journal of Fuels and Lubricants, Vol. 1 (1), pp. 192-200, 2009.
  • [27] Yang, J., Yang, X., Liu, J., Han, Z., Zhong, Z., Dyno Test Investigations of Gasoline Engine Fueled with Butanol-Gasoline Blends, SAE Paper no 2009-01-1891, 2009.
  • [28]Witze, P., Hall, M., Bennet, M., Cycle-resolved Measurements of Flame Kernel Growth and Motion Correlated with Combustion Duration, SAE paper n. 900023, 1990.
  • [29] Zhu, G. S., Reitz, R. D., Xin, J., Takabayashi T., Modelling characteristics of gasoline wall films in the intake port of port fuel injection engines, Int. J. Engine Research, Vol. 2 (4), pp. 231-248, 2001.
  • [30] Kim, H., Yoon, S., Lai, M. C., Study of Correlation between Wetted Fuel Footprints on Combustion Chamber Walls and UBHC in Engine Start Processes, Int. J. of Automotive Technology, Vol. 6 (5), pp. 437-444, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0039-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.