PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of number of step reactions on flame parameters under quenching conditions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Last decade, construction and using of microscale gas-turbines and internal combustion engines is collecting growing attention. However, the flame propagation limitations impede the development of micro and mesoscale combustion devices. Due to its small scale, increasing effect of flame-wall interaction causes a large heat loss and in consequence flame quenching. Both, fundamental experimental work and numerical simulations are conducted in order to overcome quenching issues. The most basic analysis concerns flame behaviour in small scale devices are premixed flame propagation in narrow tubes. There are two possibilities of flame-flow configurations: flame moving in a stationary mixture and a stationary flame in mowing mixture. These configurations have influence on flame shape, flame propagation velocity and quenching diameter. Most of numerical investigation assumes single-step reaction. It means that for flames propagating in propane-air mixtures C3H8 reacts directly with oxygen and leads to CO2 and H2O. This chemical kinetics mechanism omits existence of CO in reaction zone and in combustion products. Therefore it is interesting to use two-step reactions mechanism and compare the results with those obtained from single-step reaction model. The purpose of this analysis is to find influence of number of reaction steps on flame behaviour under quenching conditions for flames propagating in stationary lean propane-air mixtures. Quenching diameter, flame propagation velocity are determined and analyzed.
Twórcy
autor
  • Technical University of Lodz, Department of Heat Technology and Refrigeration Stefanowskiego Street 1/15, 90-924 Lodz, Poland phone: +48 42 6312331, fax: +48 42 6367481, artur.gutkowski@p.lodz.pl
Bibliografia
  • [1] Zamashchikov, V. V., An Investigation of Gas Combustion in a Narrow Tube, Combustion Science and Technology, 166, pp. 1–14, 2001.
  • [2] Chao, C. Y. H., Hui, K. S., Kong, W., Cheng, P., Wang, J. H., Analytical and Experimental Study of Premixed Methane-Air Flame Propagation in Narrow Channels, International Journal of Heat and Mass Transfer, 50, pp. 1302-1313, 2007.
  • [3] Gutkowski, A., Tecce, L., Jarosinski, J., Some Features of Propane-Air Flames Under Quenching Conditions in Narrow Channels, Combustion Science and Technology, 180, pp. 1772–1787, 2008.
  • [4] Aly, S. L. and Hermance, C. E., A Two-Dimensional Theory of Laminar Flame Quenching, Combustion and Flame, 40, pp. 173-185, 1981.
  • [5] Lee, S. T, and Tsai, C. H., Numerical Investigation of Steady Laminar Propagation in a Circular Tube, Combustion and Flame, 99, pp. 484-490, 1994.
  • [6] Hackert, C. L., Ellzey, J. L., and Ezekoye, O. A., Effect of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts, Combustion and Flame, 112, pp. 73–84, 1998.
  • [7] Kim, N. Il and Maruta, K., A Numerical Study on Propagation of Premixed Flame in Small Tubes, Combustion and Flame, 146, pp. 283-301, 2006.
  • [8] ANSYS FLUENT 12.0 Documentation, ANSYS Inc.
  • [9] Westrbrook, C. K., Dryer, F. L., Chemical Kinetic Modeling of Hydrocarbon Combustion, Prog. Energy Combust. Sci. 10: 1, 1984.
  • [10] Zeldovich, Ya. B., Theory of Limit Propagation of Slow Flame, Zhur. Eksp. Teor. Fiz., 11: 159, 1941.
  • [11] Zeldovich, Ya. B., Theory of Combustion and Gas Detonation, Moscow: Akad. Nauk SSSR, 1944.
  • [12] Vagelopoulos, C. M., Egolfopoulos, F. N., Direct Experimental Determination of Laminar Flame Speeds, Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 513–519, 1998.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0039-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.