PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flame quenching by the wall-fundamental characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge of flame-wall interaction allowed us to understand the phenomena of near wall combustion and flame extinction. The study of near wall flame propagation is important because it is related to engineering applications, such as possible misfiring in internal combustion engines, optimization of combustion, and reduction of unburned hydrocarbons in the combustion products. In the present work different characteristics of the quenching distance were measured in square narrow quenching channels. The channel widths were changed from 2.5mm to 15mm, their length being 30cm. Propane/air mixture was employed in experiments. Direct visualization has been used to observe flame behaviour under quenching conditions. Numerical simulation revealed structure of limit flames during their propagation in quenching channels. It was found satisfactory agreement between numerical calculations and experiments. In conclusions it was confirmed that flame quenching depends on the relation between heat release rate to heat loss rate. Dead space appeared to be larger for rich mixtures in comparison with the lean ones. Flame curvature reached maximum value for stoichiometry and decreased for leaner or richer mixtures.
Twórcy
autor
autor
  • Technical University of Lodz Stefanowskiego 1/15, 90-924 Lodz, Poland tel.: +48 42 6362313, fax: +48 42 6367481, artur.gutkowski@p.lodz.pl
Bibliografia
  • [1] Potter, Jr. A. E., Flame Quenching, Progress in Combustion and Fuel Technology, vol. 1, ed. J. Durcarme, M. Gerstain and A. H. Lefebvre, New York, Pergamon Press, pp. 145-182, 1960.
  • [2] Jarosinski, J., Flame Quenching by a Cold Wall, Combustion and Flame, 50, pp. 167-175, 1983.
  • [3] von Kármán, T., Millan, G., Theoretical and Experimental Studies on Laminar Combustion and Detonation Waves, Fourth Symp. (Int.) on Combustion, The Combustion Inst., Pittsburgh, pp. 173-177, 1953.
  • [4] Song, Z. B., Ding, X. W., Yu, J. L., Chen, Y. Z., Propagation and Quenching of Premixed Flames in Narrow Channels, Combustion, Explosion, and Shock Waves, Vol. 42, No. 3, pp. 268-276, 2006.
  • [5] Maruta, K, Kataoka, T., Kim, N. I., Minaev, S., Fursenko, R., Characteristics of Combustion in Narrow Channel with a Temperature Gradient, Proceedings of the Combustion Institute 30, 2429-2436, 2005.
  • [6] Zamashchikov, V. V., Some Features of Gas-Flame Propagation in Narrow Tubes, Combustion, Explosion, and Shock Waves, Vol. 40, No. 5, pp. 545-552, 2004.
  • [7] Vagelopoulos, C. M., Egolfopoulos, F. N., Direct Experimental Determination of Laminar Flame Speeds, Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 513–519, 1998.
  • [8] Zeldovich, Ya. B., Barenblatt, G. I., Librovich, V. B. and Makhviladze, G. M., The Mathematical Theory of Combustion and Explosion, Moscow: Nauka, 1980.
  • [9] www.fluent.com.
  • [10] Westbrook, C. K., Dryer, F. L., Chemical Kinetic Modeling of Hydrocarbon Combustion, Prog. Energy Combust. Sci., v. 10, pp. 1-57, 1984.
  • [11] Hackert, C. L., Ellzey, J. L., Ezekoye, O. A., Effect of Thermal Boundary Conditions on Flame Shape and Quenching in Ducts, Combustion and Flame 112, pp. 73-84, 1998.
  • [12] Kim, N. L., Maruta, K., A Numerical Study on Propagation of Premixed Flame in Small Tubes, Combustion and Flame 146, pp. 283-301, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0036-0094
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.