PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of high dust capacity, high efficiency engine air filter with nanofibres

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although dust-holding capacity is the primary feature of engine air filters operating in dusty environments, efficiency becomes a major factor when selecting an engine air filter. Inertial separators and high porosity or fibrous prefilters are commonly used to decrease the dust load to the main filter while high efficiency is achieved by utilizing submicron or nanofiber fibers in the main filter. The patented multi-stage filter was designed to achieve ultra-high particle removal efficiency and dust holding capacity, and long life in dusty and on highway environments. The main (final) filter is located downstream of the prefilter. The main filter is made ofpleatedfilter media containing nanofibers with a diameter in the range of40 - 800 nanometers. The upstream in-line precleaner utilizing flow-through mini cyclones has separation efficiency of 95%. A high dust capacity, high efficiency prefilter can be used instead of the precleaner. The prefilter is made of vertically lapped nonwoven filter media made from synthetic fibers of different materials to fully utilize the tribological effect. The volume of the prefilter is determined by the performance required and space allotted. This paper discusses the filter performance of high dust holding capacity engine air filters. Filter specifications, design and performance are discussed in detail. Performance characteristics of the media and full size filters were determined using on-line particle counters and the gravimetric test method. Initial and final efficiency, and dust loading performance characteristics, are provided.
Twórcy
autor
  • Cummins Filtration Inc. 1801 U.S. Hwy. 51/138, P.O. Box 428, Stoughton, WI53589-0428, USA tel.: 608-873-2423, fax.: 608-873-1550, tad.jaroszczyk@cummins.com
Bibliografia
  • [1] Baldwin brochure - form 346
  • [2] Cheng, Y. S., Allen, M. D., Gallegos, D. P., Yeh, H. C., Drag Force and Slip Correction of Aggregate Aerosols, Aerosol Science and Technology, 8, pp. 199-214, 1988.
  • [3] Donaldson Brochure, 2002.
  • [4] Jaroszczyk, T., Fallon, S. L., Pardue, B. A., Liu, Z. G., Schmitz, K., New Generation Direct Flow Engine Air Filters – Performance Analysis, Proceedings of World Filtration Congress, New Orleans, Louisiana, USA, April 18-23, 2004.
  • [5] Jaroszczyk, T., Liu, Z. Gerald, Schwartz, S. W., Holm, C. E., Badeau, K. M., Janikowski, E., Direct Flow Air Filters - A New Approach to High Performance Engine Filtration, Proceedings of Filtech 2005, Wiesbaden, Germany, October 11-13, 2005.
  • [6] Jaroszczyk, T., Fallon, S. L., Liu, Z. Gerald, Schwartz, S. W., Holm, C. E., Badeau, K. M., Janikowski, E., Direct Flow Air Filters - a New Approach to High Performance Engine Filtration, Filtration, the International Journal for Filtration and Separation, Vol. 6, No. 4, pp. 280-286, 2006.
  • [7] Kosmider, K., Scott, J., Polymeric Nanofibers exhibit an enhanced air filtration performance, Filtration and Separation. Featured article, July/August, 2002.
  • [8] Löffler, F., Separation Efficiency and Pressure Loss of Filter Materials of Different Structure, at Different Conditions, Staub-Reinhalt, Luft (English Edition), Vol. 30 (12), pp. 27-31, 1970.
  • [9] Mann+Hummel, Publication 19 941 en 1203, Diesel Progress, North American Edition, 2004.
  • [10] Moody, L. F., Friction factor for pipe flow, Trans. ASME, Vol. 66, pp. 671-684, 1944
  • [11] Peltz, A, Durst, M., Moser, N., Hensel, V., Inline airflow filters based on compact design technology, Proceedings of Filtech Europa 2003 Conference, pp. 178-184. Düsseldorf, Germany, October 2003.
  • [12] Pich, J., The pressure drop in fabric filters in molecular flow, Staub-Reinhalt. Luft, Vol. 29, No 10, pp. 10-11, October 1969.
  • [13] Pich, J., Pressure characteristics of fibrous aerosol filters, J. of Colloid and Interface Science, Vol. 37, No. 4, pp. 912-917, December 1971.
  • [14] Pich, J., Gas Filtration Theory, in Filtration: Principles and Practices, 2nd Edition, (M. J. Matteson and C. Orr, eds.), Marcel Dekker, Inc., New York 1987.
  • [15] Pratt, R. P., Circular Filter Development, Filtration and Separation, pp. 50-52, January/February 1985.
  • [16] US Patent 2,210,397, 1940.
  • [17] US Patent 2,259,092, 1952.
  • [18] US Patent 2,599,604, 1952.
  • [19] US Patent 3,025,964, 1962.
  • [20] US Patent 4,430,223, 1984.
  • [21] US Patent 6,375,700, 2002.
  • [22] US Patent 6,482,247, 2002.
  • [23] US Patent 6,511,599, 2003.
  • [24] US Patent 7,097,694, 2006.
  • [25] US Patent 7,314,558, 2008.
  • [26] US patent 7,323,106, 2008.
  • [27] US Patent 6,387,144, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0034-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.