PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of progressive failure of composite energy absorbing structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper was to compare the influence of the applied fill on the energy absorbed by the energy ubsorbing structural elements made of composite, steel and from composite with fill foam. The experimental tests were carried out on an INSTRON universal testing machine at the speed rate of the machine's traverse equal 10 mm/min md the numerical analysis has been performed using MSC. Dytran software based on the Finite Element Method. The elements were subjected to axial kinematic loads. The higher specific absorbed energy occurs in the case of energy absorbing elements made of composites and from composite with fill foam. These elements can be applied in structures designed for the protection of people or limitation of the whole structure failure, e.g. in the case of a helicopter or car crash etc. The failure progressing in a relatively uniform manner results in the fact that the work md for failure of an energy absorbing element causes a substantial reduction of the impact load results. Application of energy absorbing elements may be a system dissipating the energy of a car impact into a crash barrier. The results of numerical simulation of stiffness plate hitting to the road barrier are presented. Experimental tests and numerical simulations were also presented for a composite sleeve subjected to progressive failure, which allowed carrying out simulation and analysis of a crash into a road barrier protected by a system of two such sleeves.
Twórcy
autor
autor
  • Military University of Technology Department Mechanics and Applied Computer Science Kaliskiego Street 2, 00-908 Warsaw, Poland tel: +48 22 6839461, fax: +48 22 6839355, niezgoda@wat.edu.pl
Bibliografia
  • [1] Farley, G. R., Relationship between Mechanical-Property and Energy-Absorption Trends for Composite Tubes, NASA Technical Paper 3284, 1992.
  • [2] Rajbhandari, S. P., An Approach to Modelling and Predicting Impact Damage in Composite Structures, ICAS 2002 Congress, pp. 862.1-862.10.
  • [3] Sahid, I., Chang, F. K., An Accumulative Damage Model for Tensile and Shear Failures of Laminated Composite Plates, Journal of Composite Materials, Vol. 29, No. 7, pp. 926-981,1995.
  • [4] Cananho, P. P., Davila C. G., Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials, NASA/TM-2002-211737, 2002.
  • [5] Fleming, D. C., Delamination Modelling of Composites for Improved Crash Analysis, Journal of Composite Materials, Vol. 35, pp. 1777-1792, 2001.
  • [6] Paris, F., A Study of Failure Criteria of Fibrous Composite Materials, NASA/CR-2001-210661, 2001.
  • [7] Johnson, A. F., Picket, A., Impact and Crash Modelling of Composite Structures: A Challenge for Damage Mechanics, Euro-am’99, 1999.
  • [8] Reedy, E. D., Mello, F. J., Guess, T. R., Modelling the Initiation and Growth of Delaminations in Composite Structures, Journal of Composite Materials, Vol. 31(8), pp. 812-831, 1997.
  • [9] Chen, J., Predicting Progressive Delamination of Stiffened Fibre-Composite Panel and Repaired Sandwich Panel by Decohesion Models, Journal of Thermoplastic Composite Materials, Vol 15, pp. 429-442, 2002.
  • [10] Fleming, D. C., Modelling Delamination Growth in Composites using MSC.Dytran, 2nd MSC Worldwide Automotive Conference – Proceedings, 2000.
  • [11] MSC.Dytran Theory Manual, version 2005, MSC.Software C.O., 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0033-0121
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.