Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper deals with the application of uncertainty analysis in structural dynamics. The usage of soft computing method, namely Genetic Algorithms (GA), is presented to show effective computational technique that allows for assessing the propagation of defmed uncertainties in modelled mechanical structure. Tested method is capable of finding variation of eigenfrequencies of Finite Element models and is based on scanning of interval global system matrices. During this process combination of values of input design parameters are found for which extremes of frequencies of vibration appear. FE model of windscreen, made available by Renault Technocentre, has been anafysed. Assumed uncertainties have taken. into account variability of material properties, geometrical characteristics and environmental conditions. Fuzzy theory together with alpha-cut strategy has been applied for modelling uncertain parameters. Sensitivity analysis has been performed to investigate the contribution effect introduced by each assumed input parameter to studied frequency of vibration. Obtained results have been presented and discussed within the context of referential results yielded from Monte Carlo simulation and GA used directly for the search of frequency extremes. Finally, observed time savings have been mentioned to justify the usage of tested computational method.
Wydawca
Czasopismo
Rocznik
Tom
Strony
153--167
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
autor
autor
- AGH University of Science and Technology, Department of Robotics and Mechatronics Al. Mickiewicza 30, 30-059 Cracow, Poland tel: +48 12 6173640,fax: +48 12 6343505, adam.martowicz@agh.edu.pl
Bibliografia
- [1] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Publishing Company, Reading, Massachusetts, USA 1989.
- [2] Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, Berlin, Heidelberg 1996.
- [3] Schueller, G. I., A State-of-the-art Report on Computational Stochastic Mechanics, Probabilistic Engineering Mechanics, 12(4), 197-321, 1997.
- [4] Moens, D., A Non-probabilistic Finite Element Approach for Structural Dynamic Analysis with Uncertain Parameters, Ph.D. Thesis, KU Leuven, Departement Werktuigunde, Leuven 2002.
- [5] Helton, J. C., Davis, F. J., Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems, Reliability Engineering and System Safety, 81(1), 23-69, 2003.
- [6] Moens, D., Vandepitte, D., Non-probabilistic Approaches for Non Deterministic FE Analysis of Imprecisely Defined Structures, Proc. of the International Conference on Noise and Vibration Engineering ISMA 2004, 3095-3119, Leuven, Belgium 2004.
- [7] Moens, D., Vandepitte, D., A Survey of Non-probabilistic Uncertainty Treatment in Finite Element Analysis, Comput. Methods Appl. Mech. Engrg., 194, 1527-1555, 2005.
- [8] Kleiber, M., Antunez, H., Hien, T. D., Kowalczyk, P., Parameter Sensitivity in Nonlinear Mechanics, John Wiley & Sons, 1997.
- [9] Gallina, A., Martowicz, A., Uhl, T., An Application of Response Surface Methodology in the Field of Dynamic Analysis of Mechanical Structures Considering Uncertain Parameters, ISMA2006 Conference on Noise and Vibration Engineering, Leuven, Belgium 2006.
- [10] Gallina, A., Martowicz, A., Uhl, T., Robustness Analysis of a car Windscreen Using Response Surface Techniques, 1st International Conference on Uncertainty in Structural Dynamics, The University of Sheffield, United Kingdom 2007.
- [11] Moore, R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs, New Jersey1966.
- [12] Zadeh, L., Fuzzy Sets, Information and Control, 8, 338–353, 1965.
- [13] Dubois, D., Prade, H.,: Fuzzy Sets and Systems. Theory and Applications, Academic Press, New York, London, Toronto, Sydney, San Francisco 1980.
- [14] Hanss, M., The Transformation Method for the Simulation and Analysis of Systems with Uncertain Parameters, Fuzzy Sets and Systems, 130(3), 277-289, 2002.
- [15] Moeller, B., Graf, W., Beer, M., Fuzzy Structural Analysis Using -alfa level Optimization. Computational Mechanics, 26, 547-565, 2000.
- [16] Qiu, Z., Chen, S., Elishakoff, I., Non-probabilistic Eigenvalue Problem for Structures with Uncertain Parameters via Interval Analysis, Chaos, Solitons & Fractals, 7(3), 303-308, 1996.
- [17] Martowicz, A., Pieczara, J., Uhl, T., Application of Soft Computing in Uncertainty Analysis Carried out within Structural Dynamics, Computer Assisted Mechanics and Engineering Sciences - CAMES, 14, 293-305, 2007.
- [18] Martowicz, A., Pieczonka, L., Uhl, T., Assessment of Dynamic Behaviour of Spot Welds with Uncertain Parameters Using Genetic Algorithms Application, Proc. of III European Conference on Computational Mechanics ECCM 2006, Lisbon, Portugal 2006.
- [19] MSC/NASTRAN, Version 70.5, Quick Reference Guide, 1998.
- [20] Zienkiewicz, O. C., Metoda elementów skończonych, Arkady, Warszawa 1972.
- [21] Pietrzak, J., Rakowski, G., Wrześniowski, K., Macierzowa analiza konstrukcji, PWN, Warszawa – Poznań 1986.
- [22] Kruszewski, J., i in., Metoda sztywnych elementów skończonych, Arkady, Warszawa 1975.
- [23] Burczyński, T., Metoda elementów brzegowych w mechanice, WNT, Warszawa 1995.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0033-0120