PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The methodology of slide micro-bearings lubrication

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The core of the presented problem is to numerically and experimentally determine, or to indicate, the values of the optimum pressure and liquid velocity values appearing near the cells, of micro-bearing cooperating surfaces, and to find ways of controlling the friction forces between particles of the liquid and the cell of the micro-bearing cooperating bodies in the thin boundary layer. Investigations of the physical and strength features are expected to be performed for various hinds of micro-bearing superficial layer and for efficient and damages micro-bearings. In order to begin treating the surface structure of a superficial layer on the cooperating micro-bearing surfaces it is absolutely necessary to have at one's disposal the proper model of a liquid flow in the thin layer, and to obtain the proper values of friction forces. During presented research are realized the following tasks: 1.  The methodology of analytical and numerical efforts to obtain characteristics on the micro- and nano- level of pressure, liquid velocity and friction forces, 2.          The methodology of experimental efforts on the nano- level to measure thin layer lubricant properties between cooperating micro-bearing surfaces. 3.          The methodology of experimental research on the micro- and macro -level to measure cooperating surfaces in micro-bearing
Słowa kluczowe
Twórcy
  • Technical University of Koszalin Institute of Mechatronics, Nanotechnology and Vacuum Technique Racławicka Street 15-17, 75-620 Koszalin, Poland tel: +48 505729119, fax: +48 94 3478489, krzysztof.wierzcholski@wp.pl
Bibliografia
  • [1] Bekir Sadik Unlu, B. S., Atik, E., Determination of friction coefficient in journal bearings, Material & Design, Elsevier, Vol. 28, pp. 973-977, 2007.
  • [2] Bhushan, B., Nano-tribology and nanomechanics of MEMS/NEMS and BioMEMS, BioNEMS materials and devices, Microelectronic Engineering, Vol. 84, pp. 387-412, 2007.
  • [3] Fyhrie, D. P., Barone, J. R., Polymer Dynamics as a Mechanistic Model for the Flow-Independent Viscoelasticity of Cartilage, Trans. of the ASME, Vol. 125, pp. 578-584, 2003.
  • [4] Hol, S. A. J., Lomonova, E., Vandenput, A. J. A., Design of a magnetic gravity compensation system, Precision Engineering, Elsevier, Vol. 30, pp. 265-273, 2006.
  • [5] Hwang, T., Ono, K., Analysis and design of hydrodynamic journal air bearings for high performance HDD spindle, Microsystems Technologies, Vol. 9, pp. 386-394, 2003.
  • [6] Jang, G. H., Kim, D. K., Han, J. H., Kim, C. S., Analysis of dynamic characteristics of HDD spindle system supported by ball bearing due to temperature variation, Microsystem Technologies, Vol. 9, pp. 243-249, 2003.
  • [7] Jang, G. H., Lee, S. H., Kim, H. W., Kim, C. S., Dynamic analysis of a HDD spindle system with FDBs due to the bearing width and asymmetric grooves of journal bearing, Microsystems Technologies, Vol. 11, pp. 499-505, 2005.
  • [8] Jang, G. H., Kim, H. W., Kim, C. S., Lee, S. H., Improvement of dynamic characteristics of a HDD spindle system supported by ball bearing at elevated temperature, Microsystem Technologies, Vol. 11, pp. 758-765, 2005.
  • [9] Jang, G. H., Han, J. H., Seo, C. H., Finite element modal analysis of a rotating disc spindle system in a HDD with hydrodynamic bearing considering the flexibility of a complicated supporting structure, Microsystem Technologies, Vol. 11, pp. 488-498, 2005.
  • [10] Jang, G. H., Seo, C. H., Lee, H. S., Finite element model analysis of an HDD considering the flexibility of spinning disc-spindle, head-suspension-actuator and supporting structure, Microsystem Technologies, Vol. 13, pp. 837-847, 2007.
  • [11] Jaworek, A., Sobczyk, A. T., Electro-spraying route to nanotechnology, An overview, Journal of Electrostatics, Vol. 66, No. 3-4, pp. 197-219, 2008.
  • [12] Miki, N., Teo, C. J., Ho, L. C., Zhang, X., Enhancement of rotordynamic performance of highspeed micro-rotors for power MEMS applications by precision deep reactive ion etching, Sensors and Actuators A, Elsevier, Vol. 104, pp. 263-267, 2003.
  • [13] Nagel-Heyer, S., Geopfert, Ch., Feyerabend, F., Peterson, J. P., Adamietz, P., Meenen, N. M., Pörtner, R., Bioreactor cultivation of three-dimensional cartilage-carrier-constructs, Bioprocess Biosyst. Eng., Springer-Verlag, Vol. 27, pp. 273-280, 2005.
  • [14] Rymuza, Z., Kusznierewicz, Z., Solarski, T., Kwacz, M., Chizhik, S., Goldade, A. V., Static ftriction and adhesion in polimer-polymer microbearings, Wear, Vol. 238, pp. 56-69, 2000.
  • [15] Schwender, N., Huber, K., Marravi, F. Al., Hannig, M., Ziegler, Ch., Initial bioadhesion on surfaces in the oral cavity investigated by scanning force microscopy, Applied Surface Science, Vol. 252, pp. 117-122, 2005.
  • [16] Sucosky, P. H., Flow characterization and modeling of cartilage development in a spinnerflask bioreactor, Dissertation thesis, Georgia Institute of Technology, 2005.
  • [17] Taber, L., Nonlinear theory of elasticity. Application to biomechanics, World ScientificPublishing Co. Pte. Ltd., New Jersey, London, Singapore 2004.
  • [18] Teo, C. J., Spakovszky, Z. S., Modelling and Experimental Investigation of Micro-hydrostaticGas Thrust Bearing for Micro-turbomachines, Journal of Turbomachinery, ASME, Vol. 128, pp. 597-605, 2006.
  • [19] Wierzcholski, K., Boundary conditions on the bio cell surfaces for nano-lubrication of microbearings, Journal of Kones Powertrain and Transport, Vol. 14, No. 3, pp. 603-609, 2007.
  • [20] Wierzcholski, K., Miszczak, A., Load Carrying Capacity of Microbearings with Parabolic Journal, Solid State Phenomena, Trans. Technical Publications, Vols. 147-149, pp. 542-547,Switzerland 2009.
  • [21] Wierzcholski, K., Asperities and deformations of hyper elastic joint cartilages in cultivation aspects, Scientific Proceedings of Applied Mechanics Department in Tech. Univ. Gliwice, pp. 469-475, 2005.
  • [22] Wierzcholski, K., Hip joint lubrication after injury for stochastic description with optimum standard deviation. Acta of Bioengineering and Biomechanics, Vol. 7, No. 2, pp. 13-40, 2005.
  • [23] Wierzcholski, K., Miszczak, A., Research methods of tribological parameters in intelligent bioreactor, (in polish), Tribologia, No. 3 (213), pp. 355-368, 2007.
  • [24] Wierzcholski, K., Miszczak, A., Project of determination of tribological parameters of cartilage cells in intelligent bioreactor, (in polish), Tribologia, No. 3 (213), pp. 339-353, 2007.
  • [25] Wierzcholski, K., Ghaemi, M. H., Tribological properties of tissue in Biobearings and bioreactors as the histotribological parameters, Exploitation Problems of Machines, No. 3, pp. 17-30, 2005.
  • [26] Wierzcholski, K., Miszczak, A., Flow on the bio cell surfaces as an element of the microbearing tribology. Journal of Kones Powertrain and Transport, Vol. 14, No. 2, pp. 553-560, 2007.
  • [27] Wierzcholski, K., Random changes of temperature in slide bearing gap. International Congress Thermal Stress IUTAM proceedings, pp. 449-452, Vienna 2005.
  • [28] Wierzcholski, K., Bio and slide bearings; their lubrication by non-Newtonian fluids and application in non-conventional systems, Tribology processes for cells, human joints and micro-bearings, Monograph, Gdańsk University of Tech., Vol. III, 2007.
  • [29] Xu, L. M., Guo, N., Modal testing and finite element modeling of subsystem in hard disc driver, Mech. Syst. Signal Process, Vol. 17 (4), pp. 747-764, 2003.
  • [30] Li, X., Du, H., Liu, B., Lau, G. K., Numerical simulation of slide air bearing based on a meshfree method for HDD applications, Microsystems Technologies, Vol. 11, pp. 797-804, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0033-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.