PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Direct application of non-thermal plasma to PM reduction from marine diesel engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes the experimental method - using non-thermal plasma reactor to cleaning exhaust gases - focused on PM compound. The demonstrator NTP reactor assembly was built as the by-pass in the real exhaust gas after-treatment system, in marine diesel engine. The reactor used to experiment is called - DBD (dielectric barrier discharge) type, The main aim of investigation was to analyze exhaust gas PM compounds under steady load of the engine. Test bench construction enables direct exhaust stream (main exhaust duet by-pass) to plasma reactor exposure with no additional components (coolers, orifices) that can change the exhaust gas properties. A new monitoring PM analyzing system, which can measure soot and SOF in low mass level, has been engaged. It consist of a diffusion charging (DC) detector with a dilution device for soot measurement, and two differential flame ionization detection (FID) method, which uses two FID detectors with separate sample lines. Exhaust emission reduction strategy for ships, Particulate Matters - PM in exhaust gas, non-thermal plasma reactor, experimental test bed and procedure, an example of reactor power measurement, test results provided into seven stages are presented in the paper.
Twórcy
autor
autor
  • Maritime University Waly Chrobrego Street 1/2 70-500 Szczecin, Poland phone: +48 91 4809400, fax: 48 91 4809575, jmyskow@am.szczecin.pl
Bibliografia
  • [1] Dan, Y., Dengshan, G., Gang, Y., Xianglin, S., Fan, G., An investigation of the treatment of particulate matter from engine exhaust using non-thermal plasma, Journal of Hazardous Materials B127, pp. 149-155, 2005.
  • [2] Du, Ch. M., Yan, J. H., Cheron, B. G., Simultaneous removal of polycyclic aromatic hydrocarbons and soot particles from flue gas by gliding arc discharge treatment, Plasma chem. Process, pp. 517-525, 2006.
  • [3] Gore, J. D., Port Idling Emission Reduction technologies For Large Cargo Vessels, National Idling Reduction Planning Conference, Department Of Transportation USA 2004.
  • [4] Lack, D. A., Corbett, J. J., Onasch, T., Lerner, B., Massoli, P., Quinn, P. K., Bates, T. S., Covert, D. S., Coffman, D., Sierau, B., Herndon, S., Allan, J., Baynard, T., Lovejoy E., Ravishankara, A. R., Williams, E., Particulate emissions from commercial shipping: chemical, physical and optical properties, Journal of Geophysical Research US, Vol. 114, 2009.
  • [5] Kraus, M., Eliasson, B., Kogelschatz, U., Wokaun, A., CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem., 3, pp. 294-300, 2001.
  • [6] Hughes, D. E., McAdams, R., Non-thermal plasma for marine diesel, International Council on Combustion Engines CIMAC Congress, Paper No. 231, p. 15, Kyoto (Japan) 2004.
  • [7] Myśków, J., Borkowski, T., Hołub, M., Kalisiak, S., Development of non-thermal plasma NOx control system for marine diesel engine, International Scientific Conference On Combustion Engines, Journal of KONES, Vol. 13, No. 3, pp. 37-44, Warsaw 2008.
  • [8] Penetrante, B., Schultheis, S. E., Non-Thermal Plasma Techniques for Pollution Control: Part B - Electron Beam and Electrical Discharge Processing, Springer-Verlag, Berlin Heidelberg New York 1993.
  • [9] Starcrest Consulting Group, LLC, Evaluation Of Low Sulphur Marine Fuel Availability – Pacific Rim, ADP 030507-513, The Port of Los Angeles 2005.
  • [10] Wagner, H. E., Brandenburg, R., Kozlov, K. V., Sonnenfeld, A., Michel, P., Behnke, J. F. The barrier discharge: basic properties and applications to surface treatment, 71, pp. 417-436, Vacuum 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0032-0050
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.