Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of residual strength of a helicopter tail boom

Treść / Zawartość
Warianty tytułu
Języki publikacji
The aim of this work is to determine the residual strength of a Mi-24 helicopter's tail boom with a structural damage. The idea of this work has come from the fact that these helicopters are operated on a battlefleld and often suffer such damages. It may be crucial to make a quick estimation whether any particular damage can cause a critical failure to the whole structure. The scope of this work covers static loading of the structure during landing. The analysis has been based on a numerical model that makes use of the Finite Element Method. The model has been developed using reverse engineering techniques. Structural discontinuities have been modelled in characteristic sections where stress concentrations occur. Boundary conditions and loads applied have been chosen to simulate normal and hard landings. Two failure criteria have been chosen: one based on the Crack Tip Opening Angle (CTOA) method that enables very efficient verification, and the second concerning the tail boom tip dislocation, taken from the helicopter,s alignment manual. The specific load history has been designed to enable detection of tail boom tip dislocation due to plastic strain in the vicinity of damage tips after the hard landing.
  • Air Force Institute of Technology Księcia Bolesława Street 6, 01-494 Warszaw tel./fax: 022 685 10 13, piotr.reymer@itwl.p
  • [1] Ball, R. E., The Fundamentals of Aircraft Combat Survivability Analysis and Design, AIAA, New York 1985.
  • [2] Leski, A., and al, Evaluation of susceptibility of a Helicopter Rotor Blade Spar to Failure under Combat Conditions, Proceedings of ESREL, T. 2, pp. 955-958, Trondheim 1998.
  • [3] Śmigłowiec Mi-24W, Opis techniczny, Książka 2 – Płatowiec i zespół napędowy, Dowództwo Wojsk Lotniczych, Poznań 1989.
  • [4] Numeryczna analiza stanu naprężenia materiału w belce ogonowej i końcowej śmigłowca Mi-24, Sprawozdanie Nr 81/31/2009, ITWL, Warszawa 2009.
  • [5] Chen, Ch. S., Wawrzynek, P. A., Ingraffea, A. R., Crack Growth Simulation and Residual Strength Prediction in Airplane Fuselages, Report NASA/CR-1999-209115, Cornell University, Ithaca, New York, USA 1999.
  • [6] Chen, Ch. S., Wawrzynek, P. A., Ingraffea, A. R., Methodology for Fatigue Crack Growth and Residual Strength Prediction with Applications to Aircraft Fuselages, Computational Mechanics, 527-532, 1997.
  • [7] Dawicke, D. S., Newman, J. C., Bieglow, C. A., Tree-Dimensional CTOA and constraint Effects During Stable Tearing in a Thin-Sheet Material, Fracture Mechanics, Vol. 26, edited by Reuter et al., American Society of Testing and materials, pp. 223-242, Philadelphia 1995.
  • [8] Dawicke, D. S., Newman, J. C., Evaluation of Various Fracture Parameters for Predictions of Residual Strength in Sheets with Multi-Site Damage, First joint DoD/FAA/NASA Conference on Aging Aircraft, Ogden, Utah, July 1997.
  • [9] Dawicke, D. S., Sutton, M. A., Newman, J. C., Bieglow, C. A., Measurement and Analysis of Critical CTOA for an Aluminum Alloy Sheet, In Fracture Mechanics, Vol. 25, ASTM STP 1220, pp. 358-379, Philadelphia 1995.
  • [10] Dawicke, D. S., Newman, J. C. Jr., Residual Strength Predictions for Multiple-Site Damage Cracking using a CTOA Criterion, Fatigue and Fracture Mechanics, Vol. 29, ASTM STP 1332, T. L. Panontin and S. D. Sheppard, eds, 1998.
  • [11] Leski, A., Implementation of the virtual crack closure technique in engineering FE calculations, Finite Elements in Analysis and Design 43, pp. 261-268, 2007.
  • [12] MSC.Marc Vol. D, User Subroutines and Special Routines, Version 2001, Software documentation, April 2001.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.