Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Various approaches to magnetorheological elastomers structures FE modelling

Treść / Zawartość
Warianty tytułu
Języki publikacji
Magnetorheological elastomers (MREs) are the materials with rheological properties which can be rapidly and reversibly changed in a continuous way by the applied magnetic field. They are the solid analogues of magnetorheological fluids (MRFs) consisting of magnetically permeable particles (such as iron) added to a viscoelastic polymeric material prior to crosslinking. In the paper different approaches to numerical modelling of the magnetorheological elastomers (MREs) structures are presented. The methods of the MRE micro- and macrostructural FE simulations are taken into consideration. The first approach is connected with the microstructural behaviour of the iron particles situated in the pure elastomer and subjected to the mechanical or magnetic load. The second approach is related to global material properties consideration and macrostructural behaviour modelling. The paper shows that there are many ways of such new materials structure behaviour modelling. All the FE analyses always need to be verified with the experiments as well as for macro- and micro scale material reactions, properties and phenomena describing.
  • Military University of Technology, Faculty of Mechanical Engineering S. Kaliskiego 2 Street, 00-908 Warsaw tel: +48 22 6837-201, fax: +48 22 6839-355,
  • [1] de Vicente, J., Bossis, G., Lacis, S., Guyot, M., Permability measurements in cobalt ferrite and carbonyl iron powders and suspensions, J. Magn. Magn. Mater, 251, 100-8, 2002.
  • [2] Wang, D., Chen, J.-S., Sun, L., Homogenization of marnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method, Finite Elem. Anal. Des., 39, 765-82, 2003.
  • [3] Zhou, G. Y., Shear properties of magnetorheological elastomer, Smart Mater. Struct., 12, 139-46, 2003.
  • [4] Farshad, M., Benine, A., Magnetoactive elastomer composites, Polym. Test., 23, 347-53, 2004.
  • [5] Jolly, M. R., Carlson, J. D., Munoz, B. C., Bullions, T. A., The magnetoviscoelastic response of elastomer composite consisting of ferrous particles embedded in a polymer matrix, J. Intell. Mater. Syst. Struct., 7, 613-22, 1996.
  • [6] Banks, H. T., Gabriella, A., Pinter, G. A., Potter, L. K., Gaitens, M. J., Yanyo, L. C., Modelling of nonlinear hysteresis in elastomer under uniaxial tension, J. Intell. Mater. Syst. Struct., 10, 116, 1996.
  • [7] Lokander, M., Reitberger, T., Stenberg, B., Oxidation of natural rubber-based magnetorheological elastomers, Polym. Degrad. Stab., Vol. 86, No. 3, pp. 467-71, 2004.
  • [8] Boczkowska, A., Awietjan, S. F., Wroblewski, R., Microstructure–property relationships of urethane magnetorheological elastomers, Smart Mater. Struct. 16, pp. 1924-1930, 2007.
  • [9] Boczkowska, A., Awietjan, S. F., Wejrzanowski, T., Kurzydłowski, K. J., Image analysis of the microstructure of magnetorheological elastomers, Journal of Materials Science, 44, pp. 3135-3140, 2009.
  • [10] Szurgott, P., Boczkowska, A., Zubko, K., Niezgoda, T., Numerical modelling of magnetic fields interaction with elastomers containing iron particles, Materials Science and Engineering A, Structural Materials Properties.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.