PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robotic rehabilitation of stroke patients using an expert system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Approximately 50 to 60 percent of the more than five million stroke survivors are moderately or minimally impaired, and may greatly benefit from rehabilitation. There is a strong need for cost-effective, long-term rehabilitation solutions, which require the therapists to provide repetitive movements to the affected limb. This is a suitable task for specialized robotic devices; however, with the few commercially available robots, the therapists are required to spend a considerable amount of time programming the robot, monitoring the patients, analyzing the data from the robot, and assessing the progress of the patients. This paper focuses on the design, development, and clinically testing an expert systembased post-stroke robotic rehabilitation system for hemiparetic arm. The results suggest that it is not necessary for a therapist to continuously monitor a stroke patient during robotic training. Given the proper intelligent tools for a rehabilitation robot, cost-effective long-term therapy can be delivered with minimal supervision.
Twórcy
autor
autor
autor
Bibliografia
  • [1] Aisen M.L., Krebs H.I., Hogan N., McDowell F., Volpe B.T. The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Archives of Neurology, vol. 54, 1997, pp. 443-446.
  • [2] American StrokeAssociation, 2010. http://www.strokeassociation.org.
  • [3] Bach-Y-Rita P., Balliet R. Recovery from a stroke. In Duncan P.W., Badke M.B. (Eds.)Stroke Rehabilitation: The Recovery of Motor Control, Yearbook Medical Publishers, Chicago, 1987.
  • [4] Broeks J.G., Lankhorst G.J., Rumping K., Prevo A.J. The long-term outcome of arm function after stroke: Results of a follow-up study. Disability and Rehabilitation, vol. 21, no. 8, 1999, pp. 357-364.
  • [5] Bruno-Petrina, A. Motor recovery in stroke. Emedicine Medscape, 2010.
  • [6] Burgar C.G., Lum P.S., Shor P.C., Van der Loos H.F.M. Rehabilitation of upper limb dysfunction in chronic hemiplegia: robot-assisted movements vs. Conventional therapy. Archives of Physical Medicine and Rehabilitation, vol. 80, 1999, p. 1121.
  • [7] Burgar C.G., Lum P.S., Shor P.C., Van der Loos H.F.M. Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience. Journal of Rehabilitation Research and Development, vol. 6, no. 37, 2000, pp. 663-673.
  • [8] Caplan L.R., Mohr J.P., Kistler J.P., Koroshetz W., Grotta J. Should thrombolytic therapy be the first-line treatment for acute ischemic stroke? New England Journal of Medicine, vol. 337, 1997, pp. 1309-1310. Carignan C.R., Krebs H.I. Telerehabilitation robotics: Bright lights, big future? Journal of Rehabilitation Research and Development, vol. 43, no. 5, 2006, pp. 695-710.
  • [10] Dipietro L., Krebs H.I., Fasoli S.E., Volpe B.T., Stein J., Bever C.T., Hogan N. Changing motor synergies in chronic stroke. Journal of Neurophysiology, vol. 98, 2007, pp. 757-768.
  • [11] Dombovy M.L. Rehabilitation and the course of recovery after stroke. In Whisnant, J. (Ed.)Stroke Population, Cohorts and Clinical Trials, Butterworth-Heinemann, Boston, 1993.
  • [12] Ferraro M., Demaio J.H., Krol J., Trudell C., Rannekleiv K., Edelstein L., Christos P., Aisen M.L., England, J., Fasoli, S., Krebs, H.I., Hogan, N., Volpe, B.T. Assessing the motor status score: A scale for the evaluation of upper limb motor outcomes in patients after stroke. Neurorehabilitation and Neural Repair, vol. 16, no. 3, 2002, pp. 283-289.
  • [13] Fugl-Meyer A.R., Jaasko L., Leyman Iolsson S., Steglind S. The post stroke hemiplegic patient. I. A method for evaluation of physical performance. Scandinavian Journal of Rehabilitation Medicine, vol. 7, 1975, pp. 13-31.
  • [14] Giarratano J., Riley G. Expert Systems: Principles and Programming, Second Edition, PWS Publishing Company, Boston,MA,1994.
  • [15] Grzymala-Busse J.W. Managing Uncertainty in Expert Systems, Kluwer Academic Publishers, Norwell, MA, 1991.
  • [16] Hogan N., Krebs H.I., Charnnarong J., Srikrishna P., Sharon A. MIT-MANUS:Aworkstation for manual therapy and training. In Proceedings of the IEEE International Workshop on Robot and Human Communication, Tokyo, Japan, 1992, pp. 161-165.
  • [17] Hogan N., Krebs H.I., Charnnarong J. Interactive robotic therapist, US patent 5,466,213, Massachusetts Institute ofTechnology, 1995.
  • [18] Ignizio J.P.Introduction to Expert Systems: The Development and Implementation of Rule-Based Expert Systems, McGraw-Hill, Inc.,NewYork,NY, 1991.
  • [19] Interactive MotionTechnologies, Inc., 2010. http://www.interactive-motion.com/
  • [20] JenkinsW.M., Merzenich M.M., Oches M.T., Allard T., Guic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile simulation. Journal of Neurophysiology, vol. 63, 1990, pp. 82-104.
  • [21] Johnson G.R., Carus D.A., Parrini G., Marchese S.S., Valeggi R. The design of a five-degree-of-freedom powered orthosis for the upper limb. In: Proc. of the Institution of Mechanical Engineers, vol. 215, no. H, 2001, pp. 275-284.
  • [22] Johnson M.J., Loureiro R.C.V., Harwin W.S. Collaborative tele-rehabilitation and robot-mediated therapy for stroke rehabilitation at home or clinic. Intelligent Service Robotics, vol. 1, no. 2, 2008, pp. 109-121.
  • [23] Jorgensen H.S., Nakayama H., Raaschou H.O., Vive-Larsen J., Stoier M., Olsen T.S. Outcome and time course recovery in stroke. Part I: The Copen-hagen stroke study Archives of Physical Medicine and Rehabilitation, vol. 76, 1995, pp. 406-412.
  • [24] Krebs H.I., Hogan N., Aisen M.L., Volpe B.T. Robotaided neurorehabilitation. IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 1, 1998, pp. 75-87.
  • [25] Lee S.,AgahA., Bekey G.A.Anintelligent rehabilitative orthotic system for cerebrovascular accident. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Los Angeles, California, 1990, pp. 815-819.
  • [26] Liebowitz J. The Handbook of Applied Expert Systems, CRCPress LLC.,NewYork,NY, 1998.
  • [27] LiuW., Mukherjee M., TsaurY., Kim S.H., Liu H, Natarajan P., Agah A. Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation. In: Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, Minnesota, 2009, pp. 5965-5968.
  • [28] Loureiro R., Amirabdollahian F., Topping M., Driessen B., HarwinW. Upper limb robot mediated stroke therapy GENTLE/s approach. Autonomous Robots, vol. 15, 2003, pp. 35-51.
  • [29] Luft A.R., McCombe-Waller S., Whitall J., Forrester L.W., Macko R., Sorkin J.D., Schulz J.B., GoldbergA.P., Hanley D.F. Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. Journal of the American Medical Association, vol. 292, 2004, pp. 1853-1861.
  • [30] Lum P.S., Burgar C.G., Shor P.C., Majmundar M., Van der Loos H.F.M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabili-tation, vol. 83, 2002, pp. 952-959.
  • [31] Natarajan P. Expert System-based Post-Stroke Robotic Rehabilitation for Hemiparetic Arm, Ph.D. Dissertation, Department of Electrical Engineering and Computer Science, University of Kansas, 2007.
  • [32] Natarajan P., LiuW., Oechslin J.,AgahA. Haptic display for robotic rehabilitation of stroke. In: Proc. of the 11 International Symposium on Robotics and Applications, Budapest, Hungary, vol. ISORA-70, 2006, pp. 1-6.
  • [33] Natarajan P., Oelschlager A.,AgahA., Pohl P.S.,Ahmad S.O., LiuW. Current clinical practices in stroke rehabilitation: Regional pilot survey Journal of Rehabilitation Research and Development, vol. 45, no. 6, 2008, pp. 841-850.
  • [34] National Institute onAging, 2010. http://www.nia.nih.gov.
  • [35] Nudo R.J., Wise B.M., SiFuentes F., Milliken G.W. Neural substrates for the effects of reha-bilitative training on motor recovery after ischemic infarct. Science, vol. 272, 1996, pp. 1791-1794.
  • [36] Reinkensmeyer D.J., Lum P.S.,Winters J.M. Emerging technologies for improving access to movement therapy following neurologic injury. In Winters, J.M. (Ed.) Emerging Challenges in Enabling Universal Access, RESNApress, 2002, pp. 136-150.
  • [37] Sanchez R.J., Liu J., Rao S., Shah P., Smith R., Cramer S.C., Bobrow J.E., Reinkensmeyer D.J.Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural and Rehabilitation Engineering, vol. 14, no. 3, 2006, pp. 378-389.
  • [38] Stefik M. Introduction to Knowledge Systems, Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1995.
  • [39] Taub E., Miller N.E., Novack T.A., Cook E.W., Fleming W.C., Nepomuceno C.S., Connell J.S., Crago J.E. Technique
  • to improve chronic motor deficit after stroke. Archives of Physical Medicine and Rehabilitation, vol. 74, 1993, pp. 347-354.
  • [40] Volpe B.T., Krebs H.I., Hogan N., Edelstein L., Diels C., Aisen M. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation, Neurology, vol. 54, no. 10, 2000, pp. 1938-1944.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0030-0033
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.