PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent leader-follower behaviour for unmanned ground-based vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper an autonomous leader-follower is presented and tested in an unknown and unpredictable environment. Three different types of controller named as First principles-based proportional (P) controller, Fuzzy Logic Controller, and Model-based Predictive Controller are developed and tested in real-time to provide a smooth following behaviour. The follower used the leader's status sent by a smart phone to differentiate between obstacles and the leader and then using two types of sensor, laser and sonar, during the obstacle avoidance procedure. In order to identify the leader again out of many obstacles around, two alternative techniques are proposed using superposition of the scans collected by the laser and predicting the leader's trajectory using evolving Takagi- Sugeno (eTS). At the end, experiments are presented with a real-time mobile robot at Lancaster University.
Twórcy
autor
autor
autor
Bibliografia
  • [1] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, V. Verma, "Experiences with a mobile robotics guide for the elderly". In: Proc. of the National Conference of Artificial Intelligence, 2002, pp. 587-592.
  • [2] J. Evans, "Helpmate: An autonomous mobile robot courier for hospitals". In: Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst. 1994, pp. 1695-1700.
  • [3] D. Hujic, E.A. Croft,G. Zak, R.G. Fenton, J.K. Mills, and B. Benhabib, "The robotic interception of moving objects in industrial settings: Strategy development and experiment". IEEE/ASME Trans.Mechatron., vol. 3, 1998, pp. 225-239.
  • [4] http://www.globalsecurity.org/military/systems/ ground/fcs-arv.htm, accessed 20April 2010.
  • [5] http://www.eca.fr/en/robotic-vehicle/roboticsterrestrial-ugvs-tsr-202-e.o.d.-mobile-robot-forremote-manipulation-of-dangerous-objects/28.htm, accessed 20April 2010.
  • [6] R. Bianco, M. Caretti, and S. Nolfi, "Developing a robot able to follow a human target in a domestic environment". In: Proc. of the First Robocare Workshop, 2003, pp. 11-14.
  • [7] O. Gigliotta, M. Caretti, S. Shokur, S. Nolfi, "Toward a person-follower robot". In: Proc. of Second Robocare Workshop, 2005.
  • [8] C. Schlegel, J. Illmann, K. Jaberg, M. Schuster, and R. Worz, "Vision based person tracking with a mobile robot". In: Proc. of the Ninth British Machine Vision Conference, 1998, pp. 418-427.
  • [9] M. Tarokh and P. Ferrari, "Robot person following usingfuzzy control and image segmentation". Journal of Robotic Systems, 2003, pp. 557-568.
  • [10] M. Kleinehagenbrock, S. Lang, J. Fritsch, F. Lomker, G. A. Fink, and G. Sagerer, "Person tracking with a mobile robot based on multi-model anchoring". In: Proc. of the 2002 IEEE Int.Workshop on Robot and Human Interactive Communication, 2002, pp. 423-429.
  • [11] G. Cielniak, M. Miladinovic, D. Hammarin, L. Goransson, A. Lilienthal, and T. Duckett, "Appearance-based tracking of persons with an omnidirectional vision sensor". In: Proc. of the Fourth IEEE Workshop on omnidirectional vision, 2003, p. 84.
  • [12] M. Kobilarov, G. Sukhatme, J. Hyams, and P. Batavia, "People tracking and following with mobile robot using an omnidirectional camera and a laser". In: IEEE International Conference on Robotics and Automation, 2006, pp. 557-562.
  • [13] M. Montemerlo, S. Thrun, andW. Whittaker, "Conditional particle filters for simultaneous mobile robot localisation and people-tracking". In: IEEE International Conference on Robotics and Automation, 2002, pp. 695-701.
  • [14] S. Shaker, J. J. Saade, and D. Asmar, "Fuzzy inferencebased person-following robot". International Journal of Systems Applications, Engineering & Development, 2008, pp. 29-34.
  • [15] P.X. Liu, M.Q.-H. Meng, "Online Data-Driven Fuzzy Clustering with Applications to Real-Time Robotic Tracking". In: IEEE Trans. on Fuzzy Systems, 2004, pp. 516-523.
  • [16] K. Astrom and B. Wittenmark, "Computer Controlled Systems: Theory and Design” Prentice Hall: NJ USA, 1984.
  • [17] B. Carse, T.C. Fogarty, and A. Munro, "Evolving Fuzzy Rule-based Controllers using GA". Fuzzy Sets and Systems, 1996, pp. 273-294.
  • [18] P. Angelov, "Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems". Berlin, Germany: SpringerVerlag, 2002.
  • [19] P. Angelov, D. Filev, "An Approach to On-line Identification of Takagi-Sugeno Fuzzy Models". In: IEEE Trans. on System, Man, and Cybernetics, part B -Cybernetics, ISSN 1094-6977, 2004, pp. 484-498.
  • [20] P. Angelov, "A Fuzzy Controller with Evolving Structure". Information Science, ISSN 0020-0255, vol. 161, 2004, pp. 21-35.
  • [21] X. Zhou, P. Angelov, "An Approach to Autonomous Self-localization of a Mobile Robot in Completely Unknown Environment using Evolving Fuzzy Rulebased Classifier". In: International Conference on Computational Intelligence Applications for Defence and Security, 2007, pp. 131-138.
  • [22] X. Zhou, P. Angelov, and C. Wang, "A predictive controller for object tracking of a mobile robot". 2 International Workshop on Intelligent Vehicle Control Systems, IVCS 2008, 5 International Conference on Informatics in Control, Automation, and Modeling, ISBN 978-9898111-34-0, 2008, pp. 73-82.
  • [23] R.R.Yager, D.P. Filev, " Essentials of fuzzy modeling and control”' JohnWiley and Sons,NewYork, USA, 1994.
  • [24] A. Ohya, T. Munekata, "Intelligent escort robot moving together with human interaction in accompany beha-vior". FIRARobot Congress, 2002.
  • [25] A.E. Hunt, A.C. Sanderson, "Vision-based predictive robotic tracking of a moving target". Robot. Inst., Carnegie Mellon Univ. Pittsburgh, PA, Tech. Rep. CMURI-TR-82-15, 1982.
  • [26] R.A. Singer, "Estimation optimal tracking filter performance for manned maneuvering targets". In: IEEE Trans. Aerosp. Electron. Syst., AES-6., 1970, pp. 473-483.
  • [27] R. Babuska, "Fuzzy Modelling for Control". Kluwer Publishers, Dordrecht, The Netherlands, 1998.
  • [28] Pioneer-3DX, User Guide, Active Media Robotics, Amherst, NH, USA, 2004.
  • [29] Pioneer P3-DX: The High Performance All-Terrain Robot. Homepage: http://www.mobilerobots.com/ResearchRobots/ResearchRobots/Pioneer P3DX.aspx.
  • [30] Laser Navigation Package: Homepage: http://www.mobilerobots.com/ResearchRobots/Accessories/LaserNavigationPkg.aspx.
  • [31] P. Angelov, J. Andreu, P. Sadeghi-Tehran, X. Zhou, „Assisted Carriage: Intelligent Leader-Follower Algorithms for Ground Platform”Tech. Rep., Lancaster University, 18 Nov. 2009, p. 24.
  • [32] P. Angelov, "An Approach for Fuzzy Rule-base Adaptation using On-line Clustering". International Journal of Approximate Reasoning, vol. 35 , no 3, 2004, pp. 275-289.
  • [33]IEEE 802.11: "Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications". (2007 revision) IEEE-SA. 12 June 2007.
  • [34] Jang, J.-S., "RANFIS: adaptive-network based fuzzy inference system". In: IEEE Transactions on System, Man, and Cybernetics, vol. 23, No3, 1993, pp. 665-685.
  • [35] F. Kuhne, J. da Silva, W. F. Lages, „Mobile Robot Trajectory Tracking Using Model Predictive Control” 2005.
  • [36] P. Angelov, "An Approach to On-line Design of Fuzzy Controller with Evolving Structure". In: 4 International Conference, RASC-2002, Dec. 2002, pp. 55-56.
  • [37] Clarke, D.W., C. Mohtadi and P. S. Tuffs, "Generalised Predictive Control. Part 1: The Basic Algorithm. Part 2: Extensions and Interpretation". Automatica, 23(2), 1987, pp. 137-160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0030-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.