PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical Analysis of the Kinetics of the Reaction of Methyl Mercaptan with Nitrogen Dioxide in the Gas Phase

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study a theoretical analysis of the kinetics and thermochemistry of the gas phase reaction between methyl mercaptan and nitrogen dioxide is presented. The molecular properties (optimized geometries, vibrational levels, and rotational constants) of the reactants and products were derived from ab in itio calculations. The relative total energies of the molecular structures taking part in the reaction kinetics were examined at the G3 level. The rate constants of the elementary steps and their dependence on temperature were evaluated using transition-state theory and a version of the statistical adiabatic channel model. The mechanism of the reaction CH3SH + NO2 is complex and the first elementary step is related to hydrogen abstraction. The derived analytical expressions for the rate constants k1a = 7.9 x 10–15 x (T/300)1.90 x exp(–8190/T) and k1b = 6.0 x 10–13 x (T/300)1.94 x exp(–16290/T) cm3 molecule–1 s–1 de scribe the kinetics of the hy - drogen abstraction reactions CH3SH + NO2 rightwards arrow CH3S + HNO2 (1a) and CH3SH + NO2 rightwards arrow CH2SH + HNO2 (1b), respectively, in the temperature range of 200–500 K. The CH3S and CH2SH radicals formed can undergo subsequent radical-radical (2a–c) and radical-NO2 (3a,b) recombination reactions with rates determined by the high-pressure limiting rate constant, expressed as k2a,Y(CH3S + CH3S) = 4.0×10–11×(T/300)0.20, k2b,infinity(CH3S + CH2SH) = 1.2×10–10×(T/300)0.15, k2c,infinity(CH2SH + CH2SH) = 6.7×10–11×(T/300)0.19, k3a,infinity(CH3S + NO2) = 1.3×10–11×(T/300)0.19, and k3b,infinity(CH2SH + NO2) = 2.6×10–11×(T/300)0.23 cm3 molecule–1 s–1. Values of the calculated rate constants are in good agreement with available results of kinetic measurements.
Rocznik
Strony
1203--1221
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
autor
  • Department of Physical Chemistry, Wroclaw Medical University, pl. Nankiera 1, 50-140 Wrocław, Po land tel.: +48 71 7840232, fax: +48 71 7840230, kasiab@kchfiz.am.wroc.pl
Bibliografia
  • 1. Finnlayson-Pitts B.J. and Pitts J.N. Jr., Chemistry ofthe Upper and Lower Atmosphere, Academic Press, San Diego, 2000.
  • 2. Tyndall G.S. and Ravishankara A.R., Int. J. Chem. Kinet., 23, 483 (1991).
  • 3. Aneja V.R, J. Air Waste Manage. Assoc., 40,469 (1990).
  • 4. Spiro P.A., Jacob D.J. and Logan J.A., J. Geophys. Res., 97, 6023 (1992).
  • 5. Masgrau L., Gonzales-Lafont A. and Lluch J.M., J. Phys. Chem. A, 107,4490 (2003).
  • 6. Urbanski S.R and Wine R.H., in: Alfassi Z.B. (Ed.), S Centered Radicals, Wiley, Chichester, 1999.
  • 7. Flatay F. and Hov O., J. Geophys. Res., 102, 21373 (1997).
  • 8. Wildt J., Kley D., Rockel A., Rockel P. and Segschneider HJ., J. Geophys. Res., 102, 5919 (1997).
  • 9. Price C, Penner J. and Prather M., J. Geophys. Res., 102, 5929 (1997).
  • 10. Price C, Penner J. and Prather M., J. Geophys. Res., 102, 5943 (1997).
  • 11. Wang Y., Jacob D.J. and Logan J.A., J. Geophys. Res., 103, 10713 (1998).
  • 12. Atkinson R., Bauich D.L., Cox R.A., Crowley J.N., Hampson R.F. Jr., Hynes R.G., Jenkin M.E., Kerr J.A., Rossi M.J. and Troe J., Summary of evaluated kinetic and photochemical data for atmospheric chemistry, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry, NIST, Gaitherburg, Maryland, 2006.
  • 13. Sander S.R, Friendl R.R., Golden D.M., Kurylo M.J., Moorgat G.K., Wine P.H., Ravishankara A.R., Kolb C.E., Molina M.J., Finlayson-Pitts B.J., Huie R.E. and Orkin V.L., Chemical kinetics and photo¬chemical data for use in atmospheric studies, NASA Panel for Data Evaluation, JPL Publication 06-2, Pasadena, CA, 2006.
  • 14. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M. A., Cheeseman J.R., Montgomery J.A. Jr., Vreven T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T, Honda Y, Kitao O., Nakai H., Kiene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C, Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C, Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R.L., Fox D.J., Keith T., Al-Laham M.A., Peng C.Y, Nanayakkara A., Challacombe M., Gill P.M.W, Johnson B., Chen W, Wong M.W., Gonzalez C. and Pople J.A., Gaussian 03, Revision B.03, Gaussian, Inc, Pittsburgh, PA, 2003.
  • 15. M0ller C. and Plesset M.S., Phys. Rev., 46, 618 (1934).
  • 16. Curtss L.A., Raghavachari K., Redfern P.C., Rassolov V. and Pople J.A., J. Chem. Phys., 109, 7764 (1998).
  • 17. Pople J.A., Head-Gordon M., Fox D.J., Raghavachari K. and Curtiss L.A., J. Chem. Phys., 90, 5622 (1989).
  • 18. Curtiss L.A., Jones C, Trucks G.W., Raghavachari K. and Pople LA., J. Chem. Phys., 93,2537 (1990).
  • 19. Curtiss L.A., Raghavachari K., Trucks G.W. and Pople J.A., J. Chem. Phys., 94, 7221 (1991).
  • 20. Johnston H.S., Gas-Phase Reaction Rate Theory, The Ronald Press Co, New York, 1966.
  • 21. Laidler K.J., Theories of Chemical Reaction Rates, McGraw-Hill, New York, 1969.
  • 22. Quack M. and Troe J., Ber. Bunsenges. Phys. Chem., 81, 329 (1977).
  • 23. Jodkowski J.T., Rayez M.T., Rayez J.C., Berces T. and Döbe S., J. Phys. Chem. A, 103, 3750 (1999).
  • 24. Brudnik K., Jodkowski J.T., Ratajczak E., Venkatraman R., Nowek A. and Sullivan R.H., Chem. Phys. Lett., 345, 435 (2001).
  • 25. Brudnik K., Jodkowski J.T. and Ratajczak E., Bull. Pol. Acad. Sci., Chem., 51, 77 (2003).
  • 26. Brudnik K., Jodkowski J.T. and Ratajczak E., J. Mol. Struct., 656, 333 (2003).
  • 27. Brudnik K., Jodkowski J.T, Nowek A. and Leszczynski J., Chem. Phys. Lett., 435, 194 (2007).
  • 28. Ruscic B. and Berkowitz J., J. Chem. Phys., 98, 2568 (1993).
  • 29. Voronkov M.G., Klyuchnikov VA., Kolabin S.N., Shvets G.N., Varusin P.I., Deryagina E.N., Korchevin N.A. and Tsvetnitskaya S.I., Dokl. Phys. Chem. (Lngl. Transl), 307, 650 (1989).
  • 30. Hawari J.A., Griller D. and Lossing RR, J. Am. Chem. Soc, 108, 3273 (1986).
  • 31. ManssonM. and Sunner S.,Acta Chem. Scand., 16, 1863 (1962).
  • 32. Jodkowski J.T., Theoretical description of the kinetics of gas-phase reactions important in atmospheric chemistry, in: Computational Chemistry, Reviews of Current Trends, Vol. 10, Chapter 4, Ed. Leszczynski J., World Scientific Publishing Co, Singapore, pp. 139-227 (2006).
  • 33. Cobos C.J. and Troe J., J. Chem. Phys., 83, 1010 (1985).
  • 34. Anastasi C, Broomfield M., Nielsen O.J. and Pagsberg P., Chem. Phys. Lett., 182, 643 (1991).
  • 35. Tycholiz D.R. and Knight A.R., J. Am. Chem. Soc, 95, 1726 (1973).
  • 36. Graham D.M., Mieville R.L., Pallen R.H. and Sivertz C, Can. J. Chem., 42, 2250 (1964).
  • 37. Rahman M.M., Becker E., WilleU. and SchindlerR.N.,5er. Bunsenges. Phys. Chem., 96,783 (1992).
  • 38. Grosjean D., Environ. Sci. Technol., 18, 460 (1984).
  • 39. Zhu L. and Bozzelli J.W, J. Phys. Chem. A, 110, 6923 (2006).
  • 40. Tyndall G.S. and Ravishankara A.R., Phys. Chem., 93, 2426 (1989).
  • 41. Balla R.J., Nelson H.H. and McDonald J.R., Chem. Phys., 109, 101 (1986).
  • 42. Anastasi C, Broomfield M., Nielsen O.J. and Pagsberg P., J. Phys. Chem., 96, 696 (1992).
  • 43. Wojcik-Pastuszka D., Gola A. and Ratajczak E., Polish J. Chem., 79, 1301 (2005).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.