PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of Reactive Blue 81 Electrooxidation at Various Electrode Materials - Kinetic Parameter

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The electrochemical oxidation of Reactive Blue 81 proceeds easier at titanium electrodes covered with titanium and ruthenium oxides than at a platinum electrode. This process proceeds at both types of electrodes in at least one electrode step before potentials reach the value at which the oxygen evolution starts and is irreversible. Ruthenium oxide has electrocatalytic properties and titanium oxides has photocatalytic properties. An increase in the content of RuO2 at the surface of a titanium electrode causes electrooxidation of Reactive Blue 81 to proceed easier and quicker. The substrate is also reduced in at least two electrode steps at potentials higher than the potentials at which the hydrogen evolution starts. The reduction is also irreversible. An increase in pH of the dye solution facilitates the electrooxidation of Reactive Blue 81.
Rocznik
Strony
1115--1126
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
autor
  • Technical University of Lodz, Institute of General and Ecological Chemistry, Faculty of Chemistry, 90-924 Lodz, ul. Zeromskiego 116, Poland, ewachrzes@p.lodz.pl
Bibliografia
  • 1.            Liakou S., Pavlou S. and Lyberatos G., Wat. Sci. Tech., 35(4), 279 (1997).
  • 2.            Bechtold T, Mader J. and Mader C., Textilveredlung, 5, 361 (2002).
  • 3.            Panizza M. and Gerisola G., Wat. Res., 35(16), 3987 (2001).
  • 4.            ZielinskaB., Grzecholska J.and Morawski A.W.,J. Photochem. Photobiol. A: Chem., 157,65 (2003).
  • 5.            Azbar N., Yonar T. and Kestioglu K., Chemosphere, 55, 35 (2004).
  • 6.            Szpyrkowicz L., Juzzolino C. and Kaul S.N., Wat. Res., 35(9), 2129 (2001).
  • 7.            Scott K., Electrochemical Processes for Clean Technology, The Royal Society of Chemistry 1995, Cambridge UK, 1995.
  • 8.            Vlyssides A.G., Loizidou M., Karlis P.K., Zorpas A.A. and Papaioannou D., J. Hazard. Mat., B70, 41 (1999).
  • 9.            Carneiro P.A., Osugi M.E., Fugivara C.S., Boralle N, Furlan M. and Zanoni M.V.B., Chemosphere, 59, 431 (2005).
  • 10.          Rajkumar D., Song B.J. and Kim J.G., Dyes and Pigments, 11, 1 (2007).
  • 11.          Koparal A.S., Yavuz Y, Giirel C. and Oguteveren U.B., J. Hazard. Mat., 145, 100 (2007).
  • 12.          Pellegrini R., Peralta-Zamora P., de Andrande A.R., Reyes J. and Duran N, Appl. Cat. B: Environ., 11, 83 (1999).
  • 13.          Socha A., Chrześcijańska E. and Kusmierek E., Dyes and Pigments, 61, 71 (2005).
  • 14.          Tilak B.V., Chen CP., Birss V.I. and Wang J., Can. J. Chem., 75, 1773 (1997).
  • 15.          Shen Z.M., Wu D., Jang J., Yuan T, Wang WH. and Jia J.P., J. Hazard Mater., B131, 90 (2006).
  • 16.          Cestarolli D.T. and de Andrade A.R., Electrochim. Acta, 48, 4137 (2003).
  • 17.          Socha A., Chrześcijańska E. and Kusmierek E., Dyes and Pigments, 71, 10 (2005).
  • 18.          Guaratini C.C.I., Zanoni M.V.B. and Fogg A.G., Microchem. J., 71, 65 (2002).
  • 19.          Galus Z., Fundamentals of Electrochemical Analysis, New York: Ellis Horwood; Warsaw: Polish Scientific Publishers PWN cop. 1994, p. 101, 299-300.
  • 20.          Jain R., Varshney S. and Sikarwar S., J. Colloid Interface Sei., 312, 292 (2007).
  • 21.          Jain R., Varshney S. and Sikarwar S., J. Colloid Interface Sei., 313, 248 (2007).
  • 22.          Pierce J., J. Soc. Dyers Colourists, 110, 131 (1994).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.