PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetically Induced Transparency

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Symposium on cold atoms and laser spectroscopy, 22th-27th October 2009, Vinh, Vietnam.
Języki publikacji
EN
Abstrakty
EN
In the initial part of the paper, the principles of the electromagnetically induced transparency (EIT) in basic three-level schemes are sketched, and some applications of this phenomenon are described. Next a presentation follows of a five-level EIT model of Bloch equations, which was developed to reconstruct multipeak cascade-EIT spectra registered in a sample of cold 85Rb atoms in MOT. The respective experiment is also described. The achieved good agreement between theory and performed experiment is documented and discussed.
Twórcy
autor
autor
autor
autor
autor
  • Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland, krkowal@ifpan.edu.pl
Bibliografia
  • [1] K. Kowalski et al. Magneto-optical Trap: fundamentals and realizations. (our other paper in this issue).
  • [2] S.E. Harris, J.E. Field, A. Imamoglu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107 (1990).
  • [3] M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 634 (2005).
  • [4] W. Gawlik, Optical nonlinearity and atomic coherences. In: Modern Nonlinear Optics, Part 3, Eds.: M. Evans, S. Kielich. Advances in Chemical Physics Series, LXXXV, 734 (1994).
  • [5] J.P. Marangos, Electromagnetically Induced Transparency. J. Mod. Optics 45, 471 (1998).
  • [6] J.P. Marangos, T. Halfmann, Electromagnetically Induced Transparency. Chapter 14 in Handbook of Optics, Third Edition, vol. IV, Optical Properties of Materials, Nonlinear Optics, Quantum Optics, Editors: M. Bass, G. Li, E.V. Stryland, Mc Graw Hill, New York etc., 14.1-14.44 (2010).
  • [7] A. Imamoglu, S.E. Harris, Lasers without inversion: Interference of dressed lifetime-broadened states. Opt. Lett. 14, 1344 (1989).
  • [8] K.J. Boller, A. Imamoglu, S.E. Harris, Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991).
  • [9] J-J Su, I.A. Yu, The Study of Coherence-Induced Phenomena Using Double-Sided Feynman Diagrams. Chin J. Phys. 41, 627 (2003).
  • [10] S. Jin, Y. Li, M. Xiao, Hyperfine spectroscopy of highlyexcited atomic states based on atomic coherence. Opt. Commun. 119, 90 (1995).
  • [11] S. Stenholm, Foundations of Laser Spectroscopy. Wiley, N. York (1984).
  • [12] M. Yan, E.G. Rickey, Y. Zhu, Electromagnetically induced transparency in cold rubidium atoms. J. Opt. Soc. Am. B 18, 1057 (2001).
  • [13] J. Gea-Banacloche, Y-q Li, S-z Jin, M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A 51, 576 (1995).
  • [14] D.J. Fulton, S. Shepherd, R.R. Moseley, B.D. Sinclair, M.H. Dunn, Continuous-wave electromagnetically induced transparency: A comparison of V, Λ, and cascade systems. Phys. Rev. A 52, 2302 (1995).
  • [15] J.R. Boon, E. Zekou, D. McGloin, M.H. Dunn, Comparison of wavelength dependence in cascade, Λ, and Vee-type schemes for electromagnetically induced transparency. Phys. Rev. A 59, 4675 (1999).
  • [16] H.X. Chen, A.V. Durrant, J.P. Marangos, J.A. Vaccaro, Observation of transient electromagnetically induced transparency in a rubidium Λ system. Phys. Rev. A 58, 1545 (1998).
  • [17] J. Clarke, H. Chen, W.A. van Wijngaarden, Electromagnetically induced transparency and optical switching in a rubidium cascade system. Appl. Opt. 40, 2047 (2001).
  • [18] S.E. Harris, Y. Yamamoto, Photon Switching by Quantum Interference. Phys. Rev. Lett. 81, 3611 (1998).
  • [19] M.O. Scully, M. Fleischhauer, High-sensitivity magnetometer based on index-enhanced media. Phys. Rev. Lett. 69, 1360 (1992).
  • [20] H. Lee, M. Fleischhauer, M.O. Scully, Sensitive detection of magnetic fields including their orientation with a magnetometer based on atomic phase coherence. Phys. Rev. A 58, 2587 (1998).
  • [21] V.A. Sautenkov, M.D. Lukin, C.J. Bednar, I. Novikova, E. Mikhailov, M. Fleischhauer, V.L. Velichansky, G.R. Welch, M.O. Scully, Enhancement of magneto-optic effects via large atomic coherence in optically dense media. Phys. Rev. A 62, 023810 (2000).
  • [22] A.V. Turukhin, V.S. Sudarshanam, J.A. Musser, B.S. Ham, P.R. Hemmer, Observation of Ultraslow and Stored Light Pulses in a Solid. Phys.Phys. Rev. Lett. 88, 023602 (2002).
  • [23] B. Ham, P. Hemmer, M. Shahriar, Efficient electromagnetically induced transparency in a rare-earth doped crystal. Optics Commun. 144, 227 (1997).
  • [24] M. Philips, H. Wang, Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well. Opt. Lett. 28, 831 (2003).
  • [25] G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Observation of Laser-Induced Quantum Coherence in a Semiconductor Quantum Well. Phys. Rev. Lett. 84, 1019 (2000).
  • [26] M.C. Phillips, H. Wang, Spin coherence and electromagnetically induced transparency via exciton correlations. Phys.Rev. Lett. 89, 186401 (2002).
  • [27] W.W. Chow, H.C. Schneider, M.C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots. Phys. Rev. A68, 053802 (2003).
  • [28] M.C. Phillips, H. Wang, I. Rumyantsev, N.H. Kwong, R. Takayama, R. Binder, Electromagnetically Induced Transparency in Semiconductors via Biexciton Coherence. Phys. Rev. Lett. 91, 183602 (2003).
  • [29] J. Houmark, A.P. Jauho, T.R. Nielsen, J. Mørk, Influence of many-particle interactions on slow light phenomena in quantum dots. J. Phys. Conference Series 107, 012005 (2008).
  • [30] Y. Wu, X. Yang, Phys. Rev. A 71, 053806 (2005).
  • [31] S. Marcinkievicius, A. Gushterov, J.P. Reithmaier, Transient electromagnetically induced transparency in self-assembled quantum dots. Appl. Phys. Lett. 92, 041113 (2008).
  • [32] Y. Okawachi, M.S. Bigelow, J.E. Sharping, Z. Zhu, A. Schweinsberg, D.J. Gauthier, R.W. Boyd, A.L. Gaeta, Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber. Phys. Rev. Lett. 94, 153902 (2005).
  • [33] Q. Xu, S. Sandhu, M.L. Povinelli, J. Shakya, S. Fan, M. Lipson, Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency. Phys. Rev. Lett. 96, 123901 (2006).
  • [34] H. Gersen, T.J. Karle, R.J.P. Engelen, W. Bogaerts, J.P. Korterik, N.F. van Hulst, T.F. Krauss, L. Kuipers, Real-Space Observation of Ultraslow Light in Photonic Crystal Waveguides. Phys. Rev. Lett. 94, 073903 (2005).
  • [35] S.E. Mingaleev, A.E. Miroshnichenko, Y.S. Kivshar, K. Busch, All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures. Phys Rev E 74, 046603-(1-15) (2006).
  • [36] A. Rostami, G. Rostami, Full-optical realization of tunable low pass, high pass and band pass optical filters using ring resonators. Opt. Commun. 240, 133 (2004).
  • [37] M. Davanco, P. Holmstrom, D.J. Blumenthal, L. Thylen, Directional coupler wavelength filters based on waveguides exhibiting electromagnetically induced transparency. IEEE J. Quant. Eelectr. 39 (4) (2003).
  • [38] A. Neogi, T. Mozume, H. Yoshida, O. Wada, Intersubband transition at 1.3 and 1.55 lm in a novel coupled InGaAs/-AlAsSb quantum well structures. IEEE Photon. Technol. Lett. 11, 632 (1999).
  • [39] M.D. Lukin, Trapping and manipulating photon states in atomic ensembles. Rev. Mod. Phys. 75, 457 (2003).
  • [40] S.E. Harris, J.E. Filed, A. Kasapi, Dispersive properties of electromagnetically induced transparency. Phys Rev. A 46, 29 (1992).
  • [41] A. Kasapi, M. Jain, G.Y. Yin, S.E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics. Phys. Rev. Lett. 74, 2447 (1995)
  • [42] O. Schmidt, R. Wynands, Z. Hussein, D. Meschede, Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A 53, R27 (1996).
  • [43] L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999).
  • [44] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, George R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Phys. Rev. Lett. 82, 5229 (1999).
  • [45] D. Budker, F. Kimball, S.M. Rochester, V.V. Yashchuk, Nonlinear Magneto-optics and Reduced Group Velocity of Light in Atomic Vapor with Slow Ground State Relaxation. Phys. Rev. Lett. 83, 1767 (1999).
  • [46] D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, Storage of Light in Atomic Vapor. Phys. Rev. Lett. 85, 783 (2001).
  • [47] Ch. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in anatomic medium using halted light pulses. Nature 409, 493 (2001).
  • [48] Slow light. Nature Photonics, Focus issue. 447-509 (August 2008, vol. 2), collection of articles.
  • [49] M.D. Lukin, Colloquium: Trapping and manipulating photon states in atomic ensemble. Rev. Mod. Phys. 75, 457-472 (2003).
  • [50] Zaremba, Propagation and storing of light in optically modified atomic media. J. Phys.: Conf. Ser. 213 012025-1-10 (2010).
  • [51] M. Fleischhauer, M.D. Lukin, Quantum memory for photons: Dark-state polaritons. Phys. Rev. A, 65, 022314 (2002).
  • [52] D. Dziczek, B. Ziętek, S. Chwirot, Low-Speed and Suspended Propagation of Light Pulses in Atomic Medium with Electromagnetically Induced Transparency. Acta Phys. Pol. A 106, 13 (2004).
  • [53] D. Dziczek, S. Chwirot, Dual control of slow light in reciprocal electromagnetically-induced-transparency conditions. Phys. Rev. A 79, 043807-1-9 (2009).
  • [54] A.V. Gorshkov, A. André, M.D. Lukin, A.S. Sørensen, Photon storage in Λ-type optically dense atomic media. III. Effects of inhomogeneous broadening. Phys. Rev. A 76, 033806-1-13 (2007).
  • [55] N.S. Ginsberg, S.R. Garner, L.V. Hau, Coherent control of optical information with matter wave dynamics. Nature 445, 623 (2007).
  • [56] T. Baba, D. Mori, Slow light engineering in photonic crystals. J. Phys. D 40 2659-2665 (2007).
  • [57] G.M. Gehring, R.W. Boyd, A.L. Gaeta, D.J. Gauthier, Fellow, A.E. Willner, Fiber-Based Slow-Light Technologies. Journal of Lightwave Technologies 23, 3752-3762 (2008).
  • [58] T.F. Krauss, Slow light in photonic crystal waveguides. J. Phys. D 40, 2666-2670 (2007).
  • [59] C. Monat, M. de Sterke, B.J. Eggleton, Slow light enhanced nonlinear optics in periodic structures. J. Opt. 12, 104003-1-17 (2010).
  • [60] S.A. Schulz, L.O. Faolain, D.M. Beggs, T.P. White, A. Melloni, T.F. Krauss, Dispersion engineered slow light in photonic crystals: a comparison. J. Opt. 12, 104004-1-10 (2010).
  • [61] K. Kowalski , E. Dimova-Arnaudova, K. Fronc, S. Gateva, M. Głódź, L. Lis, L. Petrov, J. Szonert, A System for magneto-optical cooling and trapping of Rb atoms. Opt. Applicata 36, 559 (2006).
  • [62] K. Kowalski, K. Vaseva, S. Gateva, M. Głódź, L. Petrov, J. Szonert, System for EIT spectroscopy of cold Rb atoms. Proc. of SPIE 6604 (2007) 66040K-1-5 (2007).
  • [63] K. Kowalski, V. Cao Long, H. Nguyen Viet, S. Gateva, M. Głódź, J. Szonert, Simultaneous coupling of three hfs components in a cascade scheme of EIT in cold 85Rb atoms. J. Non-Cryst. Solids 355, 1295-1301 (2009).
  • [64] Cao Long Van, Khoa Dinh Xuan, Thuan Bui Dinh, Hung Nguyen Viet, EIT in multi-level cascade scheme of cold rubidium atoms: theoretical conciderations. Communications in Physics 18, 146-150 (2008).
  • [65] J. Wang, L.B. Kong, X.H. Tu, K.J. Jiang, K. Li, H.W. Xiong, Y.F. Zhu, M.S. Zhan, Electromagnetically induced transparency in multi-level cascade scheme of cold rubidium atoms. Phys. Lett. A 328, 437 (2004).
  • [66] S.R. Echaniz, A.D. Greentree, A.V. Durrant, D.M. Segal, J.P. Marangos, J.A. Vacaro, Observations of a doubly driven V system probed to a fourth level in laser-cooled rubidium. Phys. Rev. A 013812 (2001).
  • [67] D. McGloin, Coherent effects in a driven Vee scheme. Phys. B 36, 2861 (2003).
  • [68] D. McGloin, D.J. Fulton, M.H. Dunn, Electromagnetically induced transparency in N-level cascade scheme. Opt. Commun. 190, 221 (2001).
  • [69] J. Wang, Y. Zhu, K.J. Jiang, M.S. Zhan, Bichromatic electromagnetically induced transparency in cold rubidium atoms. Phys. Rev. A 68, 063810 (2003).
  • [70] X-M. Hu, G-L. Cheng, J-H. Zou, X. Li, D. Du, Double switching from normal to anomalous dispersion via trichromatic phase manipulation of electromagnetically induced transparency. Phys. Rev. A72, 023803 (2005).
  • [71] M.O. Scully, M.S. Zubairy, Quantum Optics, Cambridge University Press, 1997.
  • [72] Y.C. Chen, C.-W. Lin, I.A. Yu, Roles of degenerate Zeeman levels in electromagnetically induced transparency. Phys. Rev. A 61, 053805 (2000).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0028-0047
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.